Anisotropic flow measurements at RHIC and LHC

Ilya Selyuzhenkov
(EMMI, GSI & FIAS)

EMMI Days

GSI, November 07, 2011
Introduction to the heavy-ion physics
History of the universe

Age ~ 13 billion years

Properties of matter during the 1st second are not well known

Early times ↔ short distances: interaction governed by QCD
Quantum Chromo-Dynamics (QCD)

α_s, strong coupling constant

QCD is a theory of strong interactions

- Chiral symmetry: identical left & right handed quarks
- Asymptotic freedom & running coupling. Renormalization scale:
 $\Lambda_{QCD} \sim 200\text{MeV}$
- Perturbative regime: $Q^2 \gg \Lambda_{QCD}$
 Deconfined state of quark & gluons
- Non-perturbative regime: $Q^2 \sim \Lambda_{QCD}$
 Quark & gluons confined in hadrons
Main questions about QCD

• What are the forms of extended QCD matter?
 ▪ Properties of hadrons (confined quarks)
 ▪ Properties of deconfined quarks and gluons
 ▪ Relevant degrees of freedom for those states

• How & when the transition between different states of matter happens?

• What symmetries are preserved by QCD (chirality, Time, Parity, and C)
 Under what conditions they can be broken/restored?
Phase diagram: map of states and phase transitions

- Temperature, MeV
- Early universe
- Critical point?
- Deconfinement and chiral transition
- Neutron stars
- Color Superconductor
- Net baryon density

Quarks and Gluons

Hadrons

Nuclei
Experimental study of the phase diagram

Experimental study of QGP phase diagram by:
smashing nuclei in head-on collision and
converting cold nuclear matter into a fireball of partons
Evolution of the system created in HIC

$\tau \sim 0$

- Nuclei just before collision

Nuclei just before collision
Evolution of the system created in HIC

\[\tau < 1 \text{ fm/c} \]

- Initial pre-equilibrium state
 hard parton scattering & jet production
gluonic fields (Color Glass Condensate)

Nuclei just before collision
Evolution of the system created in HIC

$\tau \sim 1 \text{ fm}/c$

- Initial pre-equilibrium state
 hard parton scattering & jet production
 gluonic fields (Color Glass Condensate)

- Quark-gluon plasma formation
 thermalization (hydrodynamics)

Nuclei just before collision
Evolution of the system created in HIC

- Initial pre-equilibrium state
 hard parton scattering & jet production
gluonic fields (Color Glass Condensate)

- Quark-gluon plasma formation
 thermalization (hydrodynamics)

- QGP expansion and decay
 phase transition of partons into hadrons
 - Hadronization

\[\tau \sim 10 \text{ fm/c} \]
Evolution of the system created in HIC

- Initial pre-equilibrium state
 - hard parton scattering & jet production
gluonic fields (Color Glass Condensate)

- Quark-gluon plasma formation
 - thermalization (hydrodynamics)

- QGP expansion and decay
 - phase transition of partons into hadrons
 - Hadronization
 - Rescattering & chemical freeze out
 - Kinetic freeze out (stop interacting)

\[\tau > 10 \text{ fm/c} \]
Evolution of the system created in HIC

produced particles:
\[p, \pi, K, \phi, \Lambda, \gamma, D, J/\Psi, \text{jets} \]

- Initial pre-equilibrium state
- Quark-gluon plasma formation
- QGP expansion and decay
- Experimentally access only hadronic state

Nuclei just before collision

Hard parton scattering & jet production
Gluonic fields (Color Glass Condensate)
Quark-gluon plasma formation
Thermalization (hydrodynamics)
Phase transition of partons into hadrons
- Hadronization
- Rescattering & chemical freeze out
- Kinetic freeze out (stop interacting)

\[\tau \sim 10^{15} \text{ fm}/c \]
Evolution of the system created in HIC

- Initial pre-equilibrium state
 - hard parton scattering & jet production
 - gluonic fields (Color Glass Condensate)

- Quark-gluon plasma formation
 - thermalization (hydrodynamics)

- QGP expansion and decay
 - phase transition of partons into hadrons
 - Hadronization
 - Rescattering & chemical freeze out
 - Kinetic freeze out (stop interacting)

- Experimentally access only hadronic state

Many observables need to be studied to establish the properties of QGP
Anisotropic transverse flow

- Why measure flow?
- Measurement techniques: correlations and non-flow
- Elliptic flow at RHIC and LHC
- Flow fluctuations and higher harmonics
Colliding nuclei has a finite size

Peripheral collision (large b)

Overlap region is strongly asymmetric in the transverse plane

Central collision (small b)

Overlap region is close to be symmetric in the transverse plane

Asymmetry of the overlap region depends on the impact parameter

b - impact parameter
Nucleon-nucleon collisions in the overlap region

Peripheral collision

Small number of nucleon-nucleon collisions:
- few particles produced

Central collision

Large number of NN collisions:
- abundant particle production

- elementary nucleon-nucleon (NN) collision

Number of produced particles is correlated with the impact parameter
Produced particles interact with each other

Particle emitted out-of-plane

Multiple interaction with medium

Emitted in-plane

Less interaction - small modification
Particle collectivity

Peripheral collision

Strong coordinate space asymmetry transforms into the azimuthal asymmetry in the momentum space

Central collision

Multiple interaction with medium but small initial spacial asymmetry: small asymmetry in the momentum space

Correlated particle production wrt. the collision plane of symmetry
Quantifying azimuthal asymmetry

Coordinate space asymmetry is \(\sim \) ellipsoidal quantified by eccentricity:

\[
\epsilon_s = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}
\]

\(x, y \) - position of each elementary NN interaction
Quantifying azimuthal asymmetry

Coordinate space asymmetry is \(\sim \) ellipsoidal quantified by eccentricity:

\[
\epsilon_s = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}
\]

\(x, y \) - position of each elementary NN interaction

Momentum space asymmetry:

\[
e_p \sim \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_y^2 + p_x^2 \rangle} \rightarrow \langle \cos(2\Delta \phi) \rangle
\]

Second Fourier harmonic in momentum space

\(p_t \) - particle transverse momentum

\(\Delta \phi \) - azimuthal angle relative to the reaction plane
Time evolution of the spatial and momentum asymmetries

Spacial asymmetry drops very fast

Momentum asymmetry develops very early

Momentum asymmetry is sensitive to:
- Early times of the system evolution
- Equation of State

EoS I: massless ideal gas
EoS RHIC: matching Lattice QCD
Anisotropic transverse flow: Fourier harmonics

Fourier decomposition of the particles azimuthal distribution wrt. the reaction plane:

\[
\frac{dN}{d(\Delta \phi)} \sim 1 + 2 \sum_{n=1}^{\infty} v_n(p_t, \eta) \cos(n\Delta \phi)
\]

No “sin” terms because of the collision symmetry

\[v_n(p_t, \eta)\] – anisotropic transverse flow coefficients

- \(v_1\) - directed flow
- \(v_2\) - elliptic flow
- \(v_3\) - triangular flow
Experimental measurements of the anisotropic flow
Modern ultra-relativistic HI colliders

Relativistic Heavy Ion Collider

- RHIC
- PHOBOS
- BRAHMS
- PHENIX
- STAR
- AGS

Large Hadron Collider

- LHC
- CMS
- ALICE
- ATLAS
- LHCb
- SPS
- PS

<table>
<thead>
<tr>
<th></th>
<th>RHIC</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>BNL (USA)</td>
<td>CERN (Europe)</td>
</tr>
<tr>
<td>Circumference</td>
<td>3.8 km</td>
<td>27 km</td>
</tr>
<tr>
<td>Species</td>
<td>p, d, Cu, Au, U polarized protons</td>
<td>p, Pb</td>
</tr>
<tr>
<td>Center of mass energy per nucleon pair</td>
<td>in GeV 7.7-38, 62, 200 500 (pp only)</td>
<td>in TeV 0.9, 2.76, 7 (pp) 2.76 (Pb)</td>
</tr>
</tbody>
</table>
Current heavy-ion experiments at RHIC and LHC

STAR (Solenoidal Tracker At RHIC)

ALICE (A Large Ion Collider Experiment)

PHENIX (Pioneering High Energy Nuclear Ion Experiment)

ATLAS (A Toroidal LHC Apparatus)

CMS (Compact Muon Solenoid)

Main capabilities for heavy-ion studies:

Charge particle tracking and identification: full azimuth, large rapidity coverage, wide p_t range: ~ 100 MeV/c to ~ 100 GeV/c

Calorimetry and rare probes: neutral particles, photons, jets, heavy flavor
Anisotropic flow measurement techniques

\[\frac{dN}{d(\phi_i - \Psi_{RP})} \sim 1 + 2 \sum_{n=1} v_n \cos[n(\phi_i - \Psi_{RP})] \]

\[v_n = \langle \cos[n(\phi_i - \Psi_{RP})] \rangle \]

- directly calculable only in theory when the reaction plane orientation is known
Anisotropic flow measurement techniques

\[
\frac{dN}{d(\phi_i - \Psi_{RP})} \sim 1 + 2 \sum_{n=1} v_n \cos[n(\phi_i - \Psi_{RP})]
\]

\[v_n = \langle \cos[n(\phi_i - \Psi_{RP})] \rangle\] - directly calculable only in theory when the reaction plane orientation is known

Event plane angle - experimental estimate of the reaction plane angle based on the measured azimuthal distribution of particles:

\[\Psi_{RP} \rightarrow \Psi_{EP}\left\{ \sum_{\phi_j} g(\phi_j) \right\}\]

\[v_n^{obs} = \langle \cos[n(\phi_i - \Psi_{EP})] \rangle \sim \langle \sum_{\phi_j \neq \phi_i} \cos n(\phi_i - \phi_j) \rangle\]

\[c_n\{2\} = \langle \cos n(\phi_i - \phi_j) \rangle\] - two particle correlations

Measure anisotropic flow with azimuthal correlations
Non-flow correlations

Non-flow: correlations among the particles unrelated to the reaction plane

In case of two particle correlations: \(\langle \cos[n(\phi_i - \phi_j)] \rangle = \langle v_n^2 \rangle + \delta_{2,n} \)

Sources of non-flow correlations:
- Resonance decay
- Jet production
- In general - any cluster production
Non-flow correlations

Non-flow: correlations among the particles unrelated to the reaction plane

In case of two particle correlations: \(\langle \cos n (\phi_i - \phi_j) \rangle = \langle v_n^2 \rangle + \delta_{2,n} \)

Sources of non-flow correlations:
- Resonance decay
- Jet production
- In general - any cluster production

Example: 2-particle decay

Collective flow: correlations between particles through the common plane of symmetry

Probability to be correlated for one particle with another out of \(M \)-particles is \(1/(M-1) \):

\[
\delta_2 \sim \frac{1}{M - 1}
\]

To measure flow with 2-particle correlations:

\[
v_n \gg \frac{1}{\sqrt{M}}
\]

For RHIC/LHC: \(v_n \approx 0.04 - 0.07 \)

\(M = 200 \rightarrow v_n \gg 0.07 \)
Estimating flow with multi-particle cumulants

Rapidity separation between correlated particles suppress short-range non-flow:

$$v_2\{2\} > v_2\{2,|\Delta \eta|\}$$

Large non-flow in peripheral collisions
Estimating flow with multi-particle cumulants

elliptic flow vs. centrality

Rapidity separation between correlated particles suppress short-range non-flow:

$$v_2\{2\} > v_2\{2,|\Delta \eta|\}$$

Large non-flow in peripheral collisions

Note:

$$v_2\{2\}$$ and $$v_2\{4\}$$ differ not only because of non-flow, but also due to flow fluctuations (discussed later)

Multi-particle cumulants remove residual non-flow:

$$v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$$

ALICE Preliminary, Pb-Pb events at $$\sqrt{s_{NN}} = 2.76 \text{ TeV}$$
Elliptic flow: the dominant flow component at the relativistic energies
Elliptic flow vs. collision energy

Experimental results covers about 4 decades of the collision energy

Data from GSI, AGS, SPS, RHIC, and LHC experiments
Elliptic flow: RHIC vs. LHC

30% increase of v_2 from RHIC: stronger collectivity at LHC

But: measured v_2 vs. transverse momenta has similar shape and magnitude at RHIC and LHC
Identified particle spectra: LHC vs. RHIC

Spectra shapes changed significantly from RHIC to LHC

Radial expansion (flow):
Boost particles to higher p_t (particles gain extra radial velocity)

From Blast wave spectra fits:
20% stronger radial flow at LHC
→ increase of integral v_2
Elliptic flow mass splitting

Similar to spectra:

\(v_2 \) of heavier particles is pushed to higher \(p_t \)

Viscous hydrodynamics well describe flow of \(\pi^\pm \) and \(K^\pm \):

\[\rightarrow \text{sensitivity to QGP viscosity} \]

Including hadronic rescattering with UrQMD model allows better reproduce proton \(v_2 \):

\[\rightarrow \text{sensitivity to the evolution} \]
Constituent number of quarks scaling

Observe approximate number of quark scaling:

Strong indication that system evolved through deconfined (QGP) phase
Flow fluctuations
Experimentally study many collisions

Three collisions with the same:
- magnitude of impact parameter
- reaction plane angle

y_{lab}

χ_{lab}
Fluctuating initial energy density

Fluctuating spacial asymmetry results in the event-by-event fluctuations of anisotropic flow
How fluctuations affect the measured flow?

2-particle azimuthal correlation:

\[c_n\{2\} = \langle \cos[2(\phi_i - \phi_j)] \rangle = \langle v_n^2 \rangle + \delta_{n,2} \]

\[\langle v_n^2 \rangle \neq \langle v_n \rangle^2 \]

\[\langle v_n^2 \rangle = \langle v_n \rangle^2 + \sigma_n^2 \]

\[\langle \cos[n(\phi_i - \phi_j)] \rangle = \langle v_n \rangle^2 + \sigma_n^2 + \delta_{n,2} \]

flow fluctuations non-flow
Elliptic flow fluctuations

2-particle correlations affected by 3 effects:

\[v_2 \{2\} = \sqrt{\langle v_2^2 \rangle + \sigma_2^2 + \delta_2} \]

Residual non-flow subtracted based on HIJING Monte-Carlo:

\[v_2^{corr} \{2\} \approx \langle v_2 \rangle + \frac{\sigma_2^2}{2 \langle v_2 \rangle} \]

Many-particle correlations free of non-flow:

\[v_2 \{4\} \approx \langle v_2 \rangle - \frac{\sigma_2^2}{2 \langle v_2 \rangle} \]

Fluctuations set the difference between \(v_2^{corr} \{2\} \) and \(v_2 \{4\} \)

Flow fluctuations are significant

Additional constraint on the initial condition
Triangular flow, v_3 - pure fluctuations

Non-zero correlations observed for $v_3^{corr\{2\}}$ and $v_3\{4\}$!

$$v_3^{corr\{2\}} = \sqrt{\langle v_3 \rangle^2 + \sigma_3^2} \neq 0$$

Due to collision symmetry the odd harmonic flow is asymmetric:

$$v_{2n+1}(-\eta) = -v_{2n+1}(\eta)$$

In the symmetric rapidity range:

$$\langle v_3 \rangle = 0$$

$$v_3^{corr\{2\}} = \sigma_3$$

Together with fluctuations in the 2nd harmonic provides strong constraints on the initial condition
Summary

• Relativistic heavy-ion collisions provide a unique way to study the properties of the quark-gluon plasma (QGP) which is believed to be existed a few microseconds after the Big-Bang

• Anisotropic flow is a key experimental observable to study the evolution of a heavy-ion collision. It provides constraints on:
 ✓ Equation of state of the created matter
 ✓ Transport properties (i.e. viscosity) of the QGP matter
 ✓ Shape of the initial conditions in a heavy-ion collision

• Other important observables:
 ✓ Hard probes – see talk by Henner Büsching
 ✓ Heavy quarks – see talk by Yvonne Pachmayer

Looking forward for the upcoming heavy-ion run at LHC!