Pulse length and photon energy dependence of multi-photon processes

Michael Martins Universität Hamburg Institut für Experimentalphysik

31.10.2011

<ロト <回ト < 国ト < 国ト = 国

Overview

Overview

The 4d giant resonance

- Photon Energy dependence of ion spectra in Xenon
- Xenon and lodine
- A molecular effect ?
- The 3p giant resonance in Manganese
 - Ion spectra in and off resonant
 - A two-photon giant resonance ?
- Pulse length dependent effects

Overview

Thanks to

Universität Hamburg
 Nils Gerken
 Stephan Klumpp
 Florian Sorgenfrei
 Vera Linsenmann
 Karolin Mertens
 Ricarda Laasch

Kai Tiedtke

The FLASH Team Vladimir Rybnikov and Tim Wilkens for the DAQ System

Funding: DFG MA2561/4-1 , SFB925 A3

Overview

Resonances and Nonlinear processes

• Xe $4d \rightarrow (4\epsilon)f$ giant resonance

• High charge states up to Xe²¹⁺

• What is the influence of the giant resonance ?

A.Sorokin et al., PRL 99, 213002 (2007)

- Discussions on the process of the production of these charge states in the short pulse (10-20 fs) of FEL radiation
- Resonance position of the atom might be important only for the first ionization steps

Resonances and Nonlinear processes

- Choose other systems with giant resonance of different types Shape resonance vs. discrete/autoionizing resonances
- Shape resonance: lodine, barium, ... $(4d \rightarrow (4\epsilon)f)$
- Discrete resonance: Europium $(4d \rightarrow 4f)$, Manganese $(3p \rightarrow 3d)$
- What is the difference in resonant and non-resonant spectra ?
- What is the influence of the pulse length/structure ?

Experiments

- Simple setup with ion TOF and electron TOF spectrometers
- Experiments are performed at the FLASH BL2 beamline in the standard focus of $\approx 20-30 \mu m$
- MCP Detectors are operated in the linear regime recording single shot spectra with each FLASH pulse
- FLASH was operating the multibunch mode with 30-200 bunches and 250 kHz repetition rate

Xe $4d \rightarrow (4\epsilon)f$ – Photoabsorption

Kennedy and Manson, Phys. Rev. A 5, 227 (1972)

Pulse length and photon energy dependence of multi-photon processes

Xe $4d \rightarrow (4\epsilon)f$ – Photoabsorption

Kennedy and Manson, Phys. Rev. A 5, 227 (1972)

Pulse length and photon energy dependence of multi-photon processes

Xe $4d \rightarrow (4\epsilon)f$ – Ion spectra

- Pulsenergy $\approx 110 \mu J$ and $\cong 30 \mu m$ spot size
- Maximum charge state observed is Xe¹¹⁺ 4d⁷

A (10) A (10)

Xe $4d \rightarrow (4\epsilon)f$ – Summary

- For mid charge states sequential processes are dominating
- Xe resonances shift the mean charge state to 7+
- Resonances have to be included in calculations Many of the resonances are not well known

lodine – Ion spectra

- CH₂I₂ and CH₃I molecular samples
- Similar behavior as for Xe
 Cut off around at I¹⁰⁺ 4d⁷ @ 93 eV and 110 μJ

lodine

Iodine - Nonlinear molecular effect ?

$$CH_3I \longrightarrow I^{n+} + CH_x^{k+}$$

- $CH_2I_2 \longrightarrow I^{n+} + I^{m+} + CH_x^{k+}$
- Strong Coulomb interaction in the CH₂I₂ system due to the interaction of I^{m+} and Iⁿ⁺ ion fragments
- Is there an influence of the molecular environment on the multi-photon process ?

lodine

Iodine – Nonlinear molecular effect ?

Integrated charge distribution for Iⁿ⁺

$$\cong 6\mu J \qquad \qquad \cong 110\mu J$$

- Modified fragment charge distribution for CH₂I₂ and CH₃I
- Comparison with I₂ and other I molecules !

Manganese

Manganese Giant Resonance

J.T. Costello et al, Phys.Rev.A 43, 1441 (1991)

- Mn 3*s*²3*p*⁶3*d*⁵4*s*²
- Different Type of Resonance
- Fano type giant resonance $3p \rightarrow 3d$
- Ion spectra in the resonance and above
- Which charge states can be reached in comparision to xenon or iodine ?
- Double core hole ionization might be used as a tool for the dynamics of processes in 3d metal compounds

Manganese

Mn - Resonant ion spectra

- Excitation at \cong 52 eV in the giant resonance $IP(4+) = 51.2 \ eV$ $IP(5+) = 72.4 \ eV$
- Lower charge states are observed in comparison to Xe and Iodine

Mn – Ion spectra

How does the 3p-3d resonance influences the charge distribution ?

Experiments at 20.3 nm were runnung at low irradiance levels of $pprox 5 \mu J$

Mn – Resonances

Influence of the 3p-3d resonance seems to be rather weak Generation of Mn¹⁺ to Mn⁴⁺ mainly due to sequential processes

A B b 4 B b

Manganese

Mn - Nonlinear Giant Resonance

- Might there be a nonlinear giant resonance ?
- One photon: $3p \rightarrow 3d$ Two photons: $3s \rightarrow 3d$
- First, principle calculation within a HF and CI approximation
- Two, 2-photon resonances: (1) $3s \rightarrow 3d$ (2) $3p^2 \rightarrow 3d^2$
- 3s → 3d is well seperated and might be observed
- Experiments at different photon energies are necessary

Pulse dependent effects

Pulse dependent effects

"old" and "new" ion spectra for Xe^{4+} to Xe^{9+}

Comparable number of photons $\cong 2 \times 10^{11}$ photons

Sorokin et al., PRL

Comparable irradiance $\cong 10^{14} W/cm^2$

- The charge state distibution varies quite strongly
- Newer data shows higher medium charge states
- What is the difference → pulse length Old data ≅ 10 - 30 *fs*

New data 100 – 300 fs (?)

Pulse length

- Evidence for change in the pulse length after the FLASH upgrade
- LOLA shows longer electron bunches
- SASE spectra taken e.g. with the PG2 monochromator ¹ shows a strongly increased number of modes
- Direct autocorrelator experiments show bunch length of 100-300 fs depending on the bunch charge
- Comparison to Ne ion data from the LCLS²
 Bunch length influences the ion charge distribution

¹ M.Martins et al., RSI 77, 115108 (2006)

² L.Young et al., Nature 466, 56 (2010)

Pulse length

Okt 2010 \approx 250 fs - April 2011 \approx 100 fs

- Charge state distribution can be explained by the longer pulses in the newer data
- Theory more complicated as compared to Ne at the LCLS due to the complex resonance structure in the Xe ions

Pulse dependent effects

Pulse length – Bunch trains

- Sort the Xe ion spectra according to the pulse intensity (100μJ) and bunch number in a bunch train
- Charge distribution is changing with the bunch number
- \rightarrow Bunch length/structure is changing in a bunch train

Summary

- Strong influence of 4d resonances in different initial charge states of Xenon and Iodine on the sequential multi-photon processes
- Influence of the 3p giant resonance in Manganese is rather weak
- Molecular environment modifies the charge state distribution in lodine molecules
- The charge state distribution is effect by the pulse length of the FEL radiation
- The pulse length of FLASH varies with the bunch number

Summary

Thank You

Pulse length and photon energy dependence of multi-photon processes

31.10.2011 23

ъ

・ロト ・ 日 ト ・ ヨ ト ・