First realization of a photo-ionization based atomic inner-shell x-ray laser at the LCLS

EMMI workshop November 2, 2011

Nina Rohringer Max Planck Advanced Study Group @ CFEL, DESY MPI PKS Dresden

XFELs are the brightest X-ray sources

Up to 10^{11} - 10^{13} photons Pulse duration: 5 - 300 fs Photon energies: 500 eV to 8 keV Focus: 1 μ m at 1 keV 100 nm at 8 keV

Resulting in intensities of $\approx 5 \times 10^{17} \text{ W/cm}^2 @ 1 \text{ keV}$ on target

Think (non-linear) quantum optics with x rays !

How to realize an atomic x-ray laser? Create population inversion by

Traditionally:

3-body recombination or

collisional pumping in hot (typicall keV), dense plasmas of high ionization degree

Ionization of inner-shell electrons

1st soft x-ray laser realized at LLNL in 1985:Ne-like Se laser, at 20 nm (60 eV)5 MW optical laser in 200 psD. Matthews et al., Phys. Rev. Lett. 54, 110 (1985).

Fast, powerful x-ray pump required !

History of photo-ionization X-ray Lasing schemes

Pump with laser produced x-ray sources

 1967 (th.) Duguay and Rentzepis, Appl. Phys. Lett. 10, 350 (Na 33 eV, Cu 9 keV)

 1976 (th.) Axelrod (Su)

 1983 (exp.) Silfvast et al. 1983 (blue laser)

 1992 (th.) Kapteyn, Appl. Opt. 31, 4931 (Ne, 850 eV)

 1993-98 (th.) Eder, Strobel, Moon, London, et al.

0000

Inner-shell

photoionization

Use laser-generated betatron source to pump XRL

2007 (th.) Jacquemot, Phuoc, Rousse, Sebban (N, Ne)

Use Synchrotrons to pump XRL

1975 (th.) Csonka and Crasemann (Li, LiH)

Use FELs to pump XRL

2003 (th.) Lan, Fill and Meyer-ter-Vehn (He) 2008 (th.) Zhao et al. (C, 280 eV) 2009 (th.) Rohringer and London, Phys. Rev. A 80, 013809 (Ne, 850 – 1022 eV)

1st successful demonstration @ LCLS, Sept. 9-13 2010

1st User experiment at the LCLS Efficient core-hole production in Neon

N. Rohringer and R. London, PRA 80, 013809 (2009)

Gain at gas density of 1.6e19 atoms/cm³: $G=\rho\sigma=64 \text{ cm}^{-1}$ N. Rohringer and R. London, PRA 80, 013809 (2009)

Experiment carried out at LCLS' AMO instrument Sept. 9-13, 2011

Single shot of highest intensity: 8×10^9 photons in Ne K- α line corresponding to 1.1 µJ, GL 21-23 $\underbrace{\int_{849 eV} \int_{960 eV} \int_{960 eV} \int_{960 eV} \int_{24 \times 10^{-3}} conversion efficiency: \approx 4 \times 10^{-3}$ Input:

LCLS pump at 960 eV pulse energy: 1.4 mJ (0.25 mJ on target) focus diameter: \approx 4 micron Pulse duration: 40 fs

Gas pressure: 500Torr Interaction length: 1.6 cm

Numerical study on the gain fluctuations Small-signal gain for two sample pulses of SASE ensemble

Kinetic equations to determine occupation of configuration states, coupled to x-ray flux propagation and amplification through medium 1-dimensional model

Temporal profile of XFEL and x-ray pulse for the ensemble average

We assumed an incoming flat-top pulse

Conclusions

1st demonstration of photo-ionization atomic inner-shell x-ray lasing scheme

- narrow, well defined and reproducible spectrum
- longitudinal coherence

Tuneable two-color x-ray source for pump/probe experiments

Use XFEL's capability of driving truly non-linear quantum optical effects

Acknowledgements

CSUJ.J. Rocca, D. Ryan, M. PurvisLLNLR. London, F. Albert, J. Dunn, S. Hau-Riege, A. Graf, R. HillLCLS, SLACJ. Bozek, C. Bostedt, T.Tsai, accelerator/LCLS operating team

This work performed under the auspices of the **U.S. Department of Energy** by LLNL under **Contract DE-AC52-07NA27344** and was supported by LLNL's LDRD program. J.J. Rocca, M. Purvis and D. Ryan were supported by the **U.S. Department of Energy, Basic Energy Sciences AMOS** Program.