

Tommaso Mazza European XFEL, Hamburg (Germany) Scientific Instrument SQS

tommaso.mazza@xfel.eu

EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities GSI, Darmstadt, Germany

Introduction: Strong field ionization of atoms

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

One-color above threshold ionization

Two-color above threshold ionization

Two-color above threshold ionization

Two-color Resonant Photoionization Processes in Atoms

XUV resonance Kr* 3d⁹ 5p

G. C. King et al., J. Phys. B 10, 2479 (1972)H. Aksela et al., Phys. Rev. A 53, 290 (1996)

"Laser-assisted Auger decay"; Schins et al., Phys. Rev. Lett. 73, 2180 (1994)

XUV resonance Kr* 3d⁹ 5p

Ponderomotive shift "S" of resonance positions

To get a shift comparable with Γ an intensity I(NIR) > 10¹² W/cm² is needed

Two-Color Photoelectron Spectroscopy: Experimental apparatus

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Experimental parameters

9

FLASH :

91.2 eV, b.w. ≈ 1 eV;

energy ~ 50 μ J / pulse; focus ~ (70 μ m)²

PG-beamline:

 $\Delta E \simeq 60$ meV, DT $\simeq 300$ fs

Optical laser :

Ti:sapphs 800 nm, 50 fs - 3 ps 1 mJ / pulse; focus ~ $(200 \ \mu m)^2$ I = $10^{11} - 10^{13} \ W/cm^2$

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Auger decay of resonantly excited Kr 3d⁻¹ 5p states

10

Two-color Resonant Photoionization Processes in Atoms Auger decay of Kr 3d⁻¹ 5p states: ponderomotive suppression by dressing IR field

Suppression of the resonant Auger yield given by increased dressing IR laser intensity

Two-color Resonant Photoionization Processes in Atoms Kr 3d - 5p excitation: ponderomotive shift by dressing IR field

The resonance lineshape retrieved from the integrated resonant Auger electron yield **normalized over the 4p PE line yield**

Kr 3d - 5p resonance lineshape

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Kr 3d - 5p excitation: ponderomotive control by dressing IR field intensity

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Kr 3d - 5p excitation: ponderomotive control by dressing IR field intensity

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Kr 3d - 5p excitation:

ponderomotive control by dressing IR field intensity

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Kr 3d - 5p excitation:

ponderomotive control by dressing IR field intensity

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Kr 3d - 5p excitation: ponderomotive control by dressing IR field intensity

02.11.2011, EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Resonance shift vs. IR ponderomotive energy

19

Ponderomotive control of Kr 3d - 5p excitation: theory

XUV onlyXUV + NIR (ponderomotive shift)XUV + NIR (ponderomotive shift + two-photon ionization of 5p)

^{02.11.2011,} EMMI Workshop on Non-Linear Dynamics of Simple Quantum Systems at Extreme Temperatures and Intensities Tommaso Mazza, European XFEL GmbH

Summary

Two-color strong-field ionization

- Synchronized XUV and NIR pulses used at FLASH
- Single-shot capability of setup
- Observation of multiple sidebands and AC Stark Shift

Ponderomotive control of XUV atomic resonance

- Studied the impact of strong NIR fields on the Kr* 3d⁹ 5p resonance at 91.2 eV
- Using $I(NIR) \sim 10^{12} \text{ W/cm}^2$ induced a ponderomotive shift of > 100 meV
- Idea: change an "opaque" to a transparent medium on a fs timescale
- Work-in-progress: Identify Auger lines from Kr²⁺ 4p⁴
- Work-in-progress: Comparison of exp. results with a sophisticated theoretical model
- Next: Measure Kr⁺ / Kr⁺⁺ ratio directly
- Next: tunable optical laser fields will allow further control, e.g. coupling of resonances

Acknowledgements

Experiment:

- European XFEL GmbH
 - Tommaso Mazza, Paul Radcliffe and Michael Meyer
- FLASH at DESY
 - Stefan Düsterer, Natalia Gerasimova and Harald Redlin
- School of Physical Sciences, Dublin City University
 Mossy Kelly and John Costello
- Department of Physics, Tongji University
 Wenbin Li

Theory:

- IESL-FORTH, University of Crete
 - Peter Lambropoulos and Katerina Papamihail

