Time-of-flight mass measurements for astrophysics

Alfredo Estrade St. Mary's University and GSI

Darmstadt, Oct 12th 2011

Outline

- Basic principles of Time-of-flight (TOF) mass measurements.
- Recent results.
- Perspectives.

Principles of time-of-flight (TOF) measurements

Measure mass relative to isotopes in the beam with well known masses (calibration masses).

Multi-turn measurements at storage rings

Main features of TOF mass measurements

• Sensitive technique can reach masses of very unstable nuclei (few 100s to few 1000s ions required).

• Well suited to fast beams, as in new generation radioctive ioen beam facilities (RIBF, FAIR, FRIB).

• Allows to map large regions of the nuclear chart by measuring several masses simultaneously.

Some typical parameters:

Technique	TOF-Br	Storage ring - Isochronous	Storage ring - cooled beam
Resolving power (∆m/m)	1.e-4	5.e-6	1.e-7
Mass uncertainty	200 keV	100 keV	10 keV
Measuring time	μsec	μsec	sec

Recent and current programs of TOF measurements

Experimental setup at NSCL

First results from TOF experiments at NSCL

Two neutron separation energy measures binding energy of last two neutrons: S2n = M(A-2,Z) - M(A,Z) + 2 M(n). Slope change indicates onset of deformation.

A. Estrade et al, to be published in PRL (arXiv:1109.5200) impact on nuclear processes in accreting NS.

First results from TOF experiments at NSCL

Two neutron separation energy measures binding energy of last two neutrons: S2n = M(A-2,Z) - M(A,Z) + 2 M(n). Slope change indicates onset of deformation.

A. Estrade et al, to be published in PRL (arXiv:1109.5200) impact on nuclear processes in accreting NS.

Constraints for nuclear mass models

'Calc.' = Finite Range Droplet Model

Figure courtesy of P. Moeller.

Radioactive Ion Beam Factory at RIKEN

r-process experiments at RIKEN

- P. Delahaye, PHYSICAL REVIEW C 74, 034331 (2006)

Recent storage ring results

L. Chen, et al, Phys. Lett. B 691 (2010) 234.

Physics result: 64Ge not significant rp-process waiting point.

X. L. Tu et al, PRL 106, 112501 (2011)

Summary of recent TOF mass measurements relevant to nuclear astrophysics

Production of new isotopes

Production of new isotopes

Conclusions

-Time-of-flight mass measurements well suited to measure masses of very unstable nuclei for astrophysics applications.

- Offer a complementary approach to other mass measurement techniques (traps).

- Measurement programs currently active at several facilities around the world (GSI, NSCL, IMP, RIKEN).

S800 spectrometer ,NSCL

Penning Trap

ESR Electron cooler, GSI

MR-TOF spectrometer, U. Giessen