Approaches to LEPP measuring nuclear reactions

René Reifarth

Goethe University Frankfurt

EMMI Workshop Nucleosynthesis beyond iron and the lighter element primary process Darmstadt, Germany, Oct. 10–12, 2011

Motivation Astrophysics: the s-process

s-process nucleosynthesis

Two components were identified and connected to stellar sites:

Main s-proce	ess 90 <a<210< th=""><th colspan="3">Weak s-process 60<a<90< th=""></a<90<></th></a<210<>	Weak s-process 60 <a<90< th=""></a<90<>		
TP-AGE	stars 1-3 ${ m M}_{ m o}$	massive stars > 8 M_{\odot}		
shell H-burning 0.9·10 ⁸ K	He-flash 3-3.5·10 ⁸ K	core He-burning 3-3.5·10 ⁸ K	shell C-burning ~1·10 ⁹ K	
kT=8 keV 10 ⁷⁻ 10 ⁸ cm ⁻³	kT=25 keV 10 ¹⁰ -10 ¹¹ cm ⁻³	kT=25 keV 10 ⁶ cm ⁻³	kT=90 keV 10 ¹¹ -10 ¹² cm ⁻³	
$\begin{array}{c} 13 \\ 0.68 \\ 0.67 \\ 0.67 \\ 0.67 \\ 0.66 \\ 0.66 \\ 200 \end{array} \begin{array}{c} 22 \\ \text{Ne}(\alpha, n) \\ \text{He-burning} \\ \text{He-burning} \\ \text{He-intershell} \\ Image of the second second$		²² Ne(α Hydrogen burni in the shell	Photosphere (star's surface) ore Helium burning in the core	

What nuclear physics input is needed?

- Reaction rates
 - Neutron induced
 - Charged particles
- Half-lives

Challenges for the weak s-process

Problems:

- small cross sections
- resonance dominated
- contributions from direct capture
- propagation effects

Missing s-yield

s-Process Fractional Contributions at $t=t_{\odot}$ with Respect to Solar System Abundances							
	Solar ^a		GCE ^b				Travaglio et al. 2004
Element	Atom (%)	σ (%)	IMSs (%)	LMSs+IMSs (%)	WEAK <i>s</i> ^c (%)	TOT s ^d (%)	
⁸⁶ Sr	9.86		8	52	24	76	
⁸⁷ Sr	7.00		5	54	16	70	
⁸⁸ Sr	82.58		10	75	7	82	
Sr		8.1	9	71	9	80	
⁸⁹ Y	100		7	69	5	74	
Y		6.0	7	69	5	74	
⁹⁰ Zr	51.45		6	53	2	55	
⁹¹ Zr	11.22		18	80	3	83	
⁹² Zr	17.15		15	76	3	79	
⁹⁴ Zr	17.38		9	79	2	81	Vonly 3 s-only
⁹⁶ Zr	2.80		40	82	0	82	
Zr		6.4	10	65	2	67	
⁹³ Nb	100		12	67	2	69	
Nb		1.4	12	67	2	69	
⁹⁵ Mo	15.92		4	39	1	40	
⁹⁶ Mo	16.68		8	78	2	80	
⁹⁷ Mo	9.55		6	46	1	47	
⁹⁸ Mo	24.13		6	59	1	60	
Mo		55	4	38	1	39	

⁸⁵Kr(n, γ) affects the s-production of ^{86,86}Sr

${}^{95}Zr(n,\gamma)$ affects the s-production of ${}^{96}Mo$

Detector for Advanced Neutron Capture Experiments

René Reifarth (Goethe U. Frankfurt)

neutrons:

- spallation source
- thermal .. 500 keV
- 20 m flight path
- 3 10⁵ n/s/cm²/decade

γ-Detector:

- 160 BaF₂ crystals
- 4 different shapes
- R_i=17 cm, R_a=32 cm
- 7 cm ⁶LiH inside
- $\varepsilon_{\gamma} \approx 90 \%$
- $\varepsilon_{\rm casc} \approx 98 \%$

⁶²Ni(n,g) at DANCE

A. M. ALPIZAR-VICENTE et al., PRC 77, 015806 (2008)

New high-resolution campaign been performed at n_TOF

Activation Method

⁶²Ni(n,γ)⁶³Ni reaction detected via ⁶³Ni/⁶²Ni ratio, AMS ($t_{1/2}$ =100 years)

Determination of neutron flux via ¹⁹⁷Au(n,γ)¹⁹⁸Au

Neutron source:

⁷Li(p,n)⁷Be

Future developments - neutrons

- if $t_{1/2}$ goes down: Activity ~ atoms/ $t_{1/2}$ goes up
- hence: number of atoms needs to go down
- since: captures ~ atoms * neutrons

- Ever more neutrons
- Indirect methods

The Frankfurt neutron source at the Stern-Gerlach-Zentrum (FRANZ)

Schematic TOF spectrum

The Frankfurt neutron source at the Stern-Gerlach-Zentrum (FRANZ)

Experimental program at FRANZ

The Frankfurt neutron source will provide the highest neutron flux in the astrophysically relevant keV region (1 - 500 keV) worldwide.

Factor of 1000 higher than at FZK!!!

Neutron capture measurements of small cross sections:

- Big Bang nucleosynthesis: ${}^{1}H(n,\gamma)$
- Neutron poisons for the s-process: ${}^{12}C(n,\gamma)$, ${}^{16}O(n,\gamma)$, ${}^{22}Ne(n,\gamma)$.
- ToF measurements of medium mass nuclei for the weak s-process.

Neutron capture measurements with small sample masses:

- Radio-isotopes for γ -ray astronomy ⁵⁹Fe(n, γ) and ⁶⁰Fe(n, γ)
- Branch point nuclei, e.g. 85 Kr(n, γ), 95 Zr(n, γ), 147 Pm(n, γ), 154 Eu(n γ), 155 Eu(n γ), 153 Cd(n γ), 185 W/(n

¹⁵⁴Eu(n, γ), ¹⁵⁵Eu(n, γ), ¹⁵³Gd(n, γ), ¹⁸⁵W(n, γ)

Future developments – half-lifes

- can strongly depend on temperature and electron density
- main effects are:
 - thermally populated lowlying states contribute to β decay
 - ionization and electron density affect electron capture probability
 - ionization affects Q-value of
 β⁻-decay (bound state decay)

- (β -) with ESR@GSI via Schottky analysis (^{187Re}, more to come)
- (β ⁻) from (p,n) reactions

Why p(⁶⁴Ni,⁶⁴Cu)n

Weak s process in massive stars (56<A<90)

- determines composition of supernova progenitor
- needed for r-process residuals
- branching allow to calculate temperature inside stars (easy to observe via ratio ⁶³Cu/⁶⁵Cu)

The EC rate of ⁶⁴Cu is expected to change within a factor of three between T_8 =0.5 and T_8 =5

One needs to know the temperaturedependence of the EC/ β^+ rate of ⁶⁴Cu accurately.

β -decay in stellar environments

 β GT-decay from thermally excited states make the b-decays temperature dependent.

This can **not** be measured in the laboratory. **Theory is needed**!

Distribution of B(GT) is needed! Solution: charge exchange cross sections

$$\frac{d\sigma^{CE}}{d\Omega}(q=0) = \hat{\sigma}_{GT}(q=0)B(GT)$$

(p,n) in inverse kinematics

Task: Measure low lying 1⁺ states

This has been done already:

⁶⁴Ni(p,n)⁶⁴Cu Anantaraman et al. (2008), ⁶⁴Ni(³He,t)⁶⁴Cu Popescu et al. (2009),

We want to establish the method in inverse kinematics for later use with unstable nuclei.

Existing data can be used for validation of the method.

R³B setup at GSI

Standard R³B setat Cave C. In addition, a low energy neutron detector (LENA) will be installed

Charged-particle induced

- (p, γ), (a, γ) in the Gamow window
- for heavy elements during p-process: ~ several MeV

Experimental determination of cross sections

- Traditional method:
 - Produce target, irradiate with H, He beam
 - Detect products
 - Delayed (activation)
 - Prompt (gammas)

Isotope of interest

detector

Reaction Studies at the ESR

Measurements of (p,γ) or (α,γ) rates in the Gamow window of the p-process in inverse kinematics.

Advantages:

- Applicable to radioactive nuclei
- Detection of ions via in-ring particle detectors (low background, high efficiency)
- Knowledge of line intensities of product nucleus not necessary
- Applicable to gases

ESR

Layout of the experimental facilities at GSI

First pilot experiment clipping tudies bat the ESR.

ESR Gas-Jet-Target

3000 /s 10-2 mbar

- Measurements performed at 9, 10, 11 AMeV
- 5-10⁶ particles per spill
- Target density 1.10¹³ atoms/cm²
- Luminosity 2.5-10²⁵
- 20 bar Cross section 2 mbarn -> ~180 counts/h

nozzle

Q. Zhong et al., Journal of Physics: Conference Series, Volume 202, Issue 1, pp. 012011 (2010)

Reaction Studies at the ESR

René Reifarth (Goethe U. Frankfurt)

Detection of Normalization of the actors ection "Ru43+):

René Reifarth (Goethe U. Frankfurt)

Neutron-induced via detailed balance

(small (p, γ) cross section, long EC/ β^{+} half-lives)

• can be overcome with small amount of neutrons coming from $v + p \rightarrow n + \beta^+$ reactions, the vp-process

Thielemann et al, Journal of Physics: Conference Series 202 (2010) 012006

Experimental method

Coulomb dissociation in inverse kinematics:

- Virtual photons produced by a high-Z target (Pb)
- Projectile at ~500 MeV/u
- Large impact parameter b
- E_{max} of the virtual photon spectrum ~ 20 MeV
- C and empty target measurements (to subtract nuclear contribution and background)

Important: results for the stable isotopes can be compared with measurements with real photons on ELBE (FZD) and S-DALINAC (TUD).

(q,n) reaction on Mo isotopes - why?

calculations:

- Large networks
- Most of the reaction rates from the statistical model

- ⁹²Mo has one of the highest cosmic abundances of all p-nuclei
- Ru and Mo isotopes are significantly underproduced in all existing network calculations
- Studied isotopes:
 - ⁹²Mo, ⁹⁴Mo, ¹⁰⁰Mo (stable) to verify the method;
 - ⁹³Mo ($t_{1/2}$ = 4*10³ y) reaction rate not measured before

O. Ershowa et. al, DPG Spring Meeting 2010 (Bonn) 10/11/11René Reifarth (Goethe U. Frankfurt)

LAND/ALADiN setup

The LAND setup provides full kinematical measurements

TFW

PSP1, 2, 3:	dE, x, y
POS:	t
CS:	dE, θ, φ (gammas)
GFI1, 2, 3:	X
TFW:	dE, t
LAND:	dE, t, x, y, z (neutrons)

Incoming beam ID

Outgoing beam ID: mass

(with cuts on incoming ¹⁰⁰Mo, outgoing Z=42 (Mo) and **neutron multiplicity in LAND =1**)

René Reifarth (Goethe U. Frankfurt)

Summary

- the s-process as a nucleosynthesis process is well understood and established
- In particular the weak component still lacks accurate nuclear data
- Data on radioactive nuclei are needed to enhance the reliability stellar model predictions
- Current facilities can measure some, upcoming facilities will investigate a suite of radioactive isotopes
- There will always be the need for other than TOF methods (half lives!)

Thank you!