Sr, Y and Zr from rotation induced s process in massive stars

Urs Frischknecht

University of Basel

collaborators:

F.-K. Thielemann, T. Rauscher, M. Pignatari (University of Basel, CH) R. Hirschi (Keele University, UK) G. Meynet (Observatoire de Genève, CH)

Darmstadt, 11.10.2011

U. Frischknecht (University of Basel)

S process in massive rotating stars

Darmstadt, 11.10.2011 1 / 16

= 200

Standard s process in massive stars

S-process production site

- Where ?: He-core, C-shell and He-shell burning
- Temperatures: $\gtrsim 2.5 \times 10^8~\text{K}$ \Rightarrow activation at end of He-burning (M $\gtrsim 13~\text{M}_\odot)$

Neutron economy

- Main neutron source: ${}^{22}Ne(\alpha,n){}^{25}Mg$
- Origin of ²²Ne: CNO are mainly transformed to ¹⁴N. The ²²Ne is produced via ¹⁴N(α, γ)¹⁸F(β^+)¹⁸O(α, γ)²²Ne
- Other sources (recycling): ${}^{13}C(\alpha,n){}^{16}O, {}^{17}O(\alpha,n){}^{20}Ne$
- Seeds: Iron group nuclei (mainly: ⁵⁶Fe)
- Poisons He-burning: ²²Ne, ²⁵Mg, ¹⁶O, ¹²C
- Poisons C-burning: ²⁴Mg, ²⁵Mg, ²⁰Ne, ¹⁶O
- Neutron densities: 10^{6} - 10^{7} cm⁻³/ 10^{10} - 10^{11} cm⁻³
- \Rightarrow Source and seeds are secondary, but poisons are primary!

Standard s process in massive stars

S-process production site

- Where ?: He-core, C-shell and He-shell burning
- Temperatures: $\gtrsim 2.5\times 10^8$ K \Rightarrow activation at end of He-burning (M $\gtrsim 13$ $M_{\odot})$

Neutron economy

- Main neutron source: ${}^{22}Ne(\alpha,n){}^{25}Mg$
- Origin of ²²Ne: CNO are mainly transformed to ¹⁴N. The ²²Ne is produced via ¹⁴N(α, γ)¹⁸F(β^+)¹⁸O(α, γ)²²Ne
- Other sources (recycling): ${}^{13}C(\alpha,n){}^{16}O, {}^{17}O(\alpha,n){}^{20}Ne$
- Seeds: Iron group nuclei (mainly: ⁵⁶Fe)
- Poisons He-burning: ²²Ne, ²⁵Mg, ¹⁶O, ¹²C
- Poisons C-burning: ²⁴Mg, ²⁵Mg, ²⁰Ne, ¹⁶O
- Neutron densities: $10^6 10^7 \text{ cm}^{-3} / 10^{10} 10^{11} \text{ cm}^{-3}$

 \Rightarrow Source and seeds are secondary, but poisons are primary! How does the s process in massive stars change, if the source is primary?

Primary ²²Ne production due to rotation

- Primary ²²Ne was found in models of massive rotating stars (Meynet et al 2006, Hirschi 2007).
- Possible primary ²²Ne production: primary carbon transformed by ¹²C(p, γ)¹³N(β^+)¹³C(p, γ)¹⁴N and ¹⁴N(α , γ)¹⁸F(β^+)¹⁸O(α , γ)²²Ne \Rightarrow mixing is necessary to produce primary ²²Ne.
- Primary ¹²C is mixed up from He-core transformed to ¹⁴N just below the convective H-shell.
- Is ¹⁴N mixed back down before the end of He-burning? How much? How is the s process affected?
- The standard s process in massive stars is limited at low Z by available ²²Ne, primary production could boost the nucleosynthesis (Pignatari et al 2008).

Geneva stellar Evolution Code - GenEC

1.5D hydrostatic code:

- Rotation: Transport of angular momentum

 meridional circulation treated as
 advection & shear as diffusion
 (e.g. Meynet & Maeder 1997)
 Transport of chemical elements also
 meridional circulation is treated as
 diffusion (Chaboyer & Zahn 1992)
- Mass loss: takes into account rotation (Maeder & Meynet 2000, Vink et al 2001, de Jager et al 1988)
- Reaction Network: parallelised version of "Basel" network (e.g. Hix and Thielemann 1999)
- Models: from ZAMS to O-burning

Grid of massive star models

- GenEC including BasNet: models until O-burning
- Number of included nuclear species: 613 (He-burning), 737 (from start of C-burning onwards)
- $\bullet\,$ Stellar masses: 15, 20, 25, and 40 M_\odot
- Composition: solar Asplund et al 2005 (isotopic ratios Lodders et al 2003) α -enhanced for sub-solar metallicities

- Rotation rates: $v_{\rm ini}/v_{\rm crit} = 0.0$ and 0.4
- Secular shear from Talon & Zahn 1997
- Important reactions:

22
Ne(α ,n)/(α , γ) - Jaeger et al 2001/NACRE
 12 C(α , γ)¹⁶O - Kunz et al. 2002
 $^{3\alpha}$ - Fynbo et al 2005
 14 N(p , γ)¹⁵O - Imbriani et al 2005

22 Ne in rotating massive stars with $v_{ m ini}/v_{ m crit}=$ 0.4

Table: Mass fraction of burned ²²Ne in convective He-core

	$Z \setminus Mass \left[M_{\odot}\right]$	15	20	25	40				
	0.014	7.3e-3	8.5e-3	1.1e-2	1.4e-2				
	1e-3	1.1e-3	4.1e-3	4.8e-3	3.9e-3				
	1e-5	5.6e-4	1.8e-3	1.4e-3 (4.5e-3)	3.2e-3				
	1e-7	-	-	1.2e-4 (5.4e-3)	-				
$v_{\rm ini}/v_{\rm crit} = 0.4$ primary ²² Ne decreases towards lower Z, but the neutron									

With $v_{\rm ini}/v_{\rm crit} = 0.4$ primary ²²Ne decreases towards lower Z, but the neutron/seed ratio increses.

Table: Mass fraction of ²²Ne in the He-shell before SN

$Z \setminus Mass \left[M_{\odot}\right]$	15	20	25	40
0.014	1.4e-2	2.0e-2	1.6e-2	1.2e-2
1e-3	7.6e-3	3.2e-2	2.0e-2	1.7e-2
1e-5	7.6e-3	1.7e-2	1.2e-2 (1.6e-2)	8.6e-3
1e-7	-	-	1.5e-2 (2.0e-2)	-

 \Rightarrow 1 to 3% available for explosive nucleosynthesis (? - e.g. Rauscher et al 2002).

Uncertainties of rotation boosted s process

Overproduction factors of 25 M_{\odot} models with Z= 10^{-5} ([Fe/H] = -3.8)

- The s-process efficiency varies strongly depending on the initial angular momentum/velocity, i.e. on the amount of primary ²²Ne.
- Important: Uncertainties in reaction rates (e.g. ¹⁷O(α, γ)), defining the strength of neutron poisons, introduce a large uncertainty at low Z.

Yields

IMF weighted ⁸⁸Sr pre-SN yields

The similar pattern is found for $^{86}\text{Sr},\,^{87}\text{Sr},\,^{89}\text{Y}$ and ^{90}Zr

- The production of Sr-peak elements is most efficient for M= 25 M_\odot \Rightarrow It is essential to know for which stars black hole formation without ejecta.
- Standard s process (without primary ²²Ne) occurs only for [Fe/H] > -2 (Prantzos et al 1990). Rotational mixing considerably enhances the s-process yields.
- Clearly no primary s-process production, but strong production of Sr-peak elements at -1 > [Fe/H] > -2.

S-process signature I

Assumption: 0.1 M_{\odot} ^{56}Fe is ejected.

(3) Darmstadt, 11.10.2011

< 1 k

ELE DOG

10 / 16

S-process signature II

Most efficient models produce [Sr/Ba] = +1 to +2.

Darmstadt, 11.10.2011

-

11 / 16

Is this s-process signature observable?

Main r-process: Sneden et al 2008

ELE NOR

12 / 16

S-process signature III

Compared to [Sr/Ba], the scatter in [Ge/Sr] is from weaker.

Observational quantities

- Not much Ba is produced \Rightarrow typically [Sr/Ba] = +0.0 to +2 by massive stars with initial [Fe/H] > -4.
- [Sr/Ba] has a strict upper limit of about +2.3.
- Scatter [Sr/Ba] is intrinsic to s process boosted by rotation.
- [Ge/Sr] is increasing from ≈ -1 (at initial [Fe/H] =-5.8) to $\approx +0.4$ (at initial [Fe/H] = 0).
- [Sr/Zr] = 0 to +1.
- Models with rotation (e.g. Meynet et al 2006) could also reproduce nitrogen enhancement found in metal-poor halo stars by e.g. Spite et al 2005 (Chiappini et al 2006).

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Does the rotation boosted s process match to solar LEPP signature (Montes et al 2007)?

Solar LEPP signature

U. Frischknecht (University of Basel)

Darmstadt, 11.10.2011

15 / 16

-

Solar LEPP signature

Darmstadt, 11.10.2011

-

Solar LEPP signature

No! \Rightarrow If a single process is responsible for the LEPP signature, it is probably not the s process in massive stars.

Darmstadt, 11.10.2011 15 / 16

Summary & Conclusion

Summary

- Rotational mixing leads to primary production of ²²Ne: 0.1 to 1% in He-core and 1 to 3% in He-shell.
- The efficiency of s process in massive stars (M \geq 15 M $_{\odot}$?) is increased by primary ²²Ne, at all [Fe/H]_{ini}. But there is no "primary" behaviour, because the seeds are secondary and poisons primary.
- Massive stars with rotation show a production peak of Sr, Y and Zr between [Fe/H] ≈ -2 and -1.
- Yields of Sr-peak elements are increased by a factor 2 to 3 at $Z = Z_{\odot}$.
- A large scatter in s-process abundances is expected from rotating massive stars at sub-solar Z. Typically [Sr/Ba] \approx +0.0 and +2.
- The boosted s process cannot reproduce the solar LEPP signature.

Summary & Conclusion

Summary

- Rotational mixing leads to primary production of ²²Ne: 0.1 to 1% in He-core and 1 to 3% in He-shell.
- The efficiency of s process in massive stars (M \gtrsim 15 M $_{\odot}$?) is increased by primary ²²Ne, at all [Fe/H]_{ini}. But there is no "primary" behaviour, because the seeds are secondary and poisons primary.
- Massive stars with rotation show a production peak of Sr, Y and Zr between [Fe/H] ≈ -2 and -1.
- Yields of Sr-peak elements are increased by a factor 2 to 3 at $Z = Z_{\odot}$.
- A large scatter in s-process abundances is expected from rotating massive stars at sub-solar Z. Typically $[Sr/Ba] \approx +0.0$ and +2.
- The boosted s process cannot reproduce the solar LEPP signature.

Outlook

- How does this boosted s process appear in GCE?
- Comparison to low Z r-process poor stars.

Rotation in GENEC

• Transport of angular momentum (Zahn et al. 1992, Meynet and Maeder 1997)

$$\rho \frac{d}{dt} \left(r^2 \Omega \right)_{M_r} = \frac{1}{5r^2} \frac{\partial}{\partial r} \left(\rho r^4 \Omega U(r) \right) + \frac{1}{2r^2} \frac{\partial}{\partial r} \left(\rho \nu r^4 \frac{\partial \Omega}{\partial r} \right)$$

Mixing of chemical species can still be done by diffusion (Chaboyer & Zahn 1992)

• Mixing by meridional circulation (*D_h* Zahn 1992)

$$D_{\rm mer} = \frac{|rU(r)|^2}{30D_{\rm h}}$$

• shear diffusion coefficient of Talon & Zahn 1997 (Maeder 1997 - similar but without $D_{\rm h}$)

$$D_{\rm shear} = \frac{(K + D_{\rm h})}{\left[\frac{\varphi}{\delta} \nabla_{\mu} (1 + \frac{K}{D_{\rm h}}) + (\nabla_{\rm ad} - \nabla_{\rm rad})\right]} \frac{\alpha H_{\rm p}}{g\delta} \left(0.8836\Omega \frac{d \ln \Omega}{d \ln r}\right)^2,$$

U. Frischknecht (University of Basel)

Reaction rates

important rates:

 ${}^{14}{\rm N}(p,\gamma)^{15}{\rm O} - {\rm Imbriani} \ {\rm et \ al \ 2005} \\ {}^{3}\alpha - {\rm Fynbo \ et \ al \ 2005} \\ {}^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O} - {\rm Kunz \ et \ al. \ 2002} \\ {}^{22}{\rm Ne}(\alpha,n)^{25}{\rm Mg} - {\rm NACRE}/{\rm Jaeger \ et \ al \ 2001} \\ {}^{17}{\rm O}(\alpha,n)/(\alpha,\gamma) - {\rm NACRE}/{\rm CF88} \\ \end{array}$

- p-, α-captures: NACRE (Angulo et al. 1999) theoretical - Rauscher & Thielemann 2000
- e⁻-captures: Fuller, Fowler & Newman 1982
- n-captures: experimental KADoNiS theoretical - Rauscher & Thielemann 2000
- decays: T-dependent Takahashi & Yokoi 1987 NETGEN (Aikawa et al 2005) constant - experimental