LEPP workshop GSI, Oct 10-12

A new sample of ~20 main-sequence dwarf stars with [Fe/H]=-3 to study the distribution of Sr and Ba abundances and come other considerations

Anna Frebel

Massachusetts Institute of Technology from 2012

TARS

METAL-PO(

METAL-POOR STARS

WHAT CAN WE LEARN FROM OLD HALO STARS?

Low-mass stars (M < 1 M☉) ⇒ Lifetimes > 10 billion years => still around!

Using metal-poor stars to reconstruct:

✓ <u>Origin and evolution</u> of chemical elements
✓ Relevant <u>nucleosynthesis processes</u> + sites
✓ Chemical + dynamical history of the Galaxy
✓ Lower limit to the <u>age</u> of the Universe

... and to provide constraints

✓ <u>Nature of the first stars</u> & initial mass function
✓ Early star & early galaxy formation processes
✓ Nucleosynthesis & <u>chemical yields of first/early SNe</u>
✓ <u>Formation of the Galactic halo</u>
✓ Hierarchical merging of galaxies

Metal-poor stars are a great tool for near-field cosmology because they are the local equivalent of the high-redshift Universe!

Hertzsprung-Russell-diagram

Temperature

TAKING A SPECTROSCOPIC LOOK

ANNA FREBEL

CURRENT SITUATION: BARIUM

ANNA O: halo stars : ultra-faint dwarfs •: classical dwarfs STARS METAL-POOR based on abundance compilation of Frebel 2010 www.cfa.harvard.edu/~afrebel

FREBE

STARS.

METAL-POOR

CURRENT SITUATION

Why is there such a large (5-6 dex) spread?

What causes it?

More than one origin/nucleosynthesis procsses? => Likely

We don't understand ..

Maybe more data can help!

ANNA FREBI

Ш

NEW SAMPLE

- Magellan observations, Feb 2009 Mar 2011
- Study unevolved main-sequence stars that are all very similar in light element abundances
- 34 total, but we caught a bunch of horizontal branch stars and 2 giants
 > 21 near MS-TO dwarf stars
 (19 stars are new)
- Is there a Sr and Ba spread?

Frebel et al. 2012

1.1

flux Relative

Frebel et al. 2012

MG @5170A

FREBEL ANNA

METAL-POOR STARS

•.

SR @4077A Relative flux Frebel et al. 2012

ANNA FREBEL

4	HE1506 011B	minut	
3	BS16550-043	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2	HE1257 / 1753	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	G64=12		
0	HE2332_3039	y	
9	HE2308_3543	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
8	HE2214_6127	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
7	HE2141_22916	v ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
6	LHE2133_0421	V	
5	HE2130_4852	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
4	HE2107-6004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
3	HE2045_5057	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2	HE1929_6715	······	
1	HE1436-0654	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0	HE1401_0010	V	
9	HE1337+0017	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
8	- HE1335 $-$ 0103	V	-
7	HE1309-1113		
6	HE1245_0430	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
5	HE1220-1000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
4	- HE1214 - 1050	V	-
3	HE1200-0009		-
2	HE0526-4059		
~ 1	LHE04442938	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
0	HE0406-3120	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
9	Las HE0232–3755		-
8	HE0223-2814	V	-
7	LHE0219_2056	V	-
6	CS30302-145		
5	CS29519_133		_
4	CS29504-018	V	-
3	Long CS22,188-2033 margan margan hand and row and have have here here here here here here here he	V MAR MAN	-
2	CD_24_17504	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
~ 1	BS17435-003		
0		\sim	
40	60 4065 4070 4075		4080
	τις 1 μ. ΓΥΠ		

34		-Amarian	HE150601/13
33			BS16550_043
32	///////////////////////////////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	не 1257 – 1753 –
31	V		
30	_		HE2332-3039
29	_		HE2308-3543
28	-		HE2214-6127
27			HE2141-2916
26	-		HE2133-0421
25	-		HE2130-4852
24			HE2107-6004
23	 		HE2045-5057
22	-		HE1929-6715
21	-	·	HE1436-0654
20	-		HE1401-0010
19			HE1337+0017
18	- V	l-~	HE1335=0103
17	- V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HE1309-1113
16	-		HE1245-0430
15	-		HE1220-1000
14	-		HE1214-1050
13	-		HE1200-0009
12	-		HE0526-4059
11	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HE0444-2938
10	-		HE0406-3120
9	-	······	МНЕ0232_3755
8	-		HE0223-2814
7	-		HE0219-2056
6	-		CS30302-145
5	-		CS29519–133
4	-	······	CS29504_018
3		manny	
2	-		CD=24_17504
1	-		BS17435=003
0	t i i i ^v i i	<u> </u>	
45	45 4550	455	4560 4565 4570 4575

Relative flux

Frebel et al. 2012

@4554A

ANNA FREBEL

BA

ARS

METAL-POOR

SRAND BA!

- Dwarf galaxy abundances are much lower than average!
- Why do halo stars have so much more?
- => Dwarf gal. abund. may provide constraints on first stars nucleosynthesis and individual yields (?)
- How did chemical evolution proceed from there?

SR/BA RATIO

Clear-cut envelopes for Sr/Ba ratio?

Ш

REB

ANNA

METAL-POOR STARS

Halo and dwarf galaxy star have the same Sr/Ba ratios => same nucleosynthesis process(es) at work?

PRE-CONCLUSION

 Clear evolution in Sr and Ba, although different: what processes could provide this?

FREBEL

ANNA

- Halo and dwarf galaxy stars show different behavior (on average, although low N stats.)
- Dwarf galaxy abundances provide unique insight into early chemical enrichment and nucleosynthesis!
- Understanding those first may shed some light into the halo "mess" following the hierarchical assembly
- But d ata hard to acquire because stars are very faint!

THE MILKY WAY'S SATELLITES

Dwarf galaxies are useful tools to study star formation and chemical evolution, early galaxy formation and the build-up of the Milky Way

dSph = gas poor dwarf galaxies

dlrr = gas rich dwarf galaxies

ANNA FREBE

USING DWARF GALAXIES TO STUDY. THE NATURE OF SMALL HALOS

In the 'luminous' world:

FREBEI

ANNA

ARS

-AL-POOR

ШΣ

Comprehensive understanding of galaxy formation

Spectroscopic observations of stars and streams (=luminous matter)

STATUS OF HIGH-RESOLUTION (R~30K) SPECTROSCOPY OF ULTRA-FAINT DWARF GALAXY STARS

Feltzing et al 2009 Frebel et al 2010 Frebel, Kirby & Simon 2010 Frebel et al 2011a+b in prep. Koch et al. 2008 Norris et al. 2010a+b Simon et al 2010 Tafelmeyer et al. 2010

THE MOST METAL-POOR STARS IN ULTRA-FAINT DWARFS

Agreement between dwarf galaxy stars and MW halo stars!

THE FIRST SUPERNOVA IN LEO IV

- Leo IV has a luminosity of $14000 L_{\odot}$ (Sand et al. 2009)
- Total iron content of the galaxy is $0.04 \ M_{\odot}$

FREBEL

ANNA

STARS

METAL-POOR

• A single PopIII SN produces >0.03 M_{\odot} of Fe (Heger & Woosley 2008)

Were *all* of the metals in LeoIV synthesized by a single star?

Simon et al. (2010): observed brightest star in LeoIV with highresolution: **[Fe/H] = -3.2**!

Leo IV abundance pattern compared to PopIII SN models

• Leo IV star • 10 M_{\odot} , normal energy • 50 M_{\odot} , high energy STARS

METAL-POOR

SKYMAPPER + MAGELLAN

Skymapper is taking its first data now! Will provide more metal-poor halo stars as well as more dwarf galaxies!

THE CHEMICAL SIGNATURE OF THE FIRST GALAXY

Motivation

Study the beginning of star and galaxy formation based on detailed ab-initio hydro simulations of the first stars and the assembly of the first galaxy (e.g., Greif+10,11)

ANNA FREBEL

Prediction: In a first galaxy no stars should show abundance patterns that reflect AGB or SN la enrichment!

AGB: can be tested with other elements

First galaxy candidates: Ursa Major II, and also Segue 1 Coma Berenices, Bootes I, Leo IV

CONCLUSION

Ш

FREB

ANNA

- Large spread in Sr and Ba remains, and remains largely unexplained; new data still inconclusive
- Generic halo stars with unknown nucleosynthetic origin are only marginally helpful in this quest :(
- But dwarf galaxies can provide the means to more cleanly couple/disentangle the nucleosynthesis process to/from the actual astrophysical sites
- A large sample of r-process stars may shed some light onto the pure r-proc component of Sr and Ba and could show what the range in the elements is

NEW R-PROCESS STAR EU @4129A

- 4250 K, log g = 0.0
- [Fe/H]=-3.2
- preliminary [Eu/Fe] ~1.1

Low carbon => good for Th, U, etc.

METAL-POOR STARS

FREBE

ANNA

R-PROCESS PATTERN

We are currently measuring hundreds of lines in both r-process stars

The abundances of the first 5 elements we measured match the solar r-process pattern well!

Another star to test whether there are any (relative) differences among light n-cap elements and compared with the solar r-process pattern -- stay tuned!

POSTDOC AD

Please check my website www.cfa.harvard.edu/~afrebel

ANNA FREBEI

METAL-POOR STARS

for two postdocs job openings

- 1) observer: high-resolution spectroscopy, metal-poor stars, nuclear astrophysics
- highly resolved cosmological DM simulations of Milky Way-like halos to trace the cosmological origin of the most metal-poor stars

TEXTBOOK & ABUNDANCES

Planets, Stars & Stellar Systems, by Springer Volume 5: Editor: Gerry Gilmore; to appear in 2012

STELLAR POPULATIONS

Metal-poor stars and the chemical enrichment of the universe (by Frebel & Norris, arXiv:1102.1748)

- GALACTIC COMPONENTS
- THE NON-STELLAR GALAXY
- GALACTIC STRUCTURE AND EVOLUTION

Abundance compilation of metal-poor stars in the literature: ~1000 stars with full chemical abundances (halo and dwarf galaxies) See <u>https://www.cfa.harvard.edu/~afrebel/abundances/abund.html</u> (as part of Frebel 2010, review on metal-poor stars)