Indirect experiments for neutron reactions with unstable nuclei

Jeff Blackmon, Louisiana State University

Indirect experiments for neutron reactions with unstable nuclei

Jeff Blackmon, Louisiana State University

However the heavy elements got made, neutron reactions on unstable nuclei were likely important.

2

LSI

Indirect experiments for neutron reactions with unstable nuclei

Jeff Blackmon, Louisiana State University

We can only directly measure neutron reactions on stable or very long-lived targets!

- Introduction: Neutron reaction rates
- s process
 - → Neutron capture rates
 - → Surrogate approaches to the exit channel
 - → Gd, Zr, Yb
- r process
 - → ¹³²Sn & ¹³⁰Sn
 - → (d,pγ)
- vp process
 - \rightarrow Thoughts on (n,p)

Statistical (Hauser-Feschbach)

NON-SMOKER Rauscher & Thielemann, ADNDT **75** (2000) TALYS Goriely, Hilaire, & Koning, AA **487** (2008)

• Assumptions:

→Many levels contribute to MAC/rate

→Independent entrance/exit channels¶: $n+A \rightarrow B^* \rightarrow B+\gamma$

$$\sigma_{n\gamma}(E) = \sum_{J\Pi} \sigma_n G_{\gamma}$$

- σ_n (Formation cross section)
 - Nuclear level densities
 - → Constrained by s-wave level spacing (stable nuclei)
 - → Otherwise model (back-shifted Fermi Gas w/ corrections)
- G_{γ} (Gamma branching ratios)
 - E1 photon strength function
 - \rightarrow Near stability: average s-wave radiation width $<\Gamma_{\gamma}>_{0}$
 - →¶Width fluctuation corrections

Surrogate has different J^{π} sensitivity than (n, γ)

- 1. Ignore it = Weisskopf-Ewing Approximation
- What to do? 2. Correct using theory
 - 3. Better? = Use $(d,p\gamma)$ + theory + experimental ratios

- Near stability
 - → Some can/will be measured directly (nToF & DANCE)
 - \rightarrow High Q-value and high level density \rightarrow *HF* Good
 - $_{\odot}$ Level density is well known from regional systematics
 - $_{\odot}$ But would like a very accurate cross section
 - \circ Largest uncertainty is gamma-branching ratios (G_{γ})
 - Importance of other branch points for LEPP?
 - → ⁷¹Ge (11 d), ⁷⁵Se (120 d), . . .

J.C. Blackmon – LEPP Workshop

Gd isotopes

- Weisskopf-Ewing: factor 2-10 off
- Compare ratio of reactions?

- \rightarrow ^{155,157}Gd similar deformations
- \rightarrow Ground state $J^{\pi} = 3/2^+$
- \rightarrow Off by factor \sim 2x
- Model relative J^{π} dependence \rightarrow Good description possible if done correctly

Oct. 13, 20/11

J.C. Blackmon – LEPP Workshop

Experiments: Scielzo PRC 81 (2010) Theory: Escher & Dietrich PRC 81 (2010)

Zr Isotopes

Forssén *et al., PRC* **75** (2007).

 Careful analysis of theoretical cross section based on regional systematics

• Good results if J^{π} population matches

LSU

Oct. 13, 20/11

LSL

J.C. Blackmon – LEPP Workshop

Neutron capture and r process

 10^{-4}

10⁻⁵

 10^{-6}

10-7

 10^{-8}

10⁻⁹

abundance

- Some n-capture rates affect abundances
- What rates seem most important?
 - → Closer to stability (freeze-out)
 - → Abundant nuclei

→ Even-even "before" close neutron shells

Oct. 13, 20/11

J.C. Blackmon – LEPP Workshop

Arcones & Martinez-Pinedo., PRC 83 (2011).

fina

NON-SMOKER

Approximation

cold r-process

Rate calculations

- Most important rates are very difficult to estimate
 - \rightarrow Level density low and cross sections are low
 - → Statistical models not robust
 - → Contribution of direct-capture is uncertain

Reaction	Q-value (MeV)	ರ ₃₀ (mb)
⁸⁴ Kr(n,γ) ⁸⁵ Kr	7.12	18
⁸⁰ Ge(n,γ) ⁸¹ Ge	4.86	3
¹³⁰ Sn(n,γ) ¹³¹ Sn	5.25	4

 ¹³⁰Sn(n,γ)¹³¹Sn
 →Very sensitive to energy of 3p neutron orbitals
 →s-wave (E1) n capture

No experimental information on neutron single-particle strength in ¹³¹Sn.

The entrance channel is also important!

(d,p) at HRIBF

• Over 100 isotopes of n-rich nuclei from uranium fission accelerated

(d,p) in "Inverse Kinematics"

Oct. 13, 20/11

ĹSŬ

J.C. Blackmon – LEPP Workshop

15

EMMI

Oct. 13, 20/11

ĹSU

J.C. Blackmon – LEPP Workshop

Oct. 13, 20/11

ĹSIJ

LSU

18

EMMI

(d,py) in inverse kinematics

- 3 challenges:
 - 1. Energy resolution (protons)
 - 2. Background

- 3. Yield (Beam + γ efficiency)
- Better p detection = SuperORRUBA
 → 24 Highly-segmented detectors
 → 1700 Individual channels

Energy resolution limited only by target thickness

2. Background: ⁷⁵As(d,pγ)⁷⁶As Test

W.A. Peters et al., In prep.

- Protons must be clearly defined (without gamma rays) to measure relative gamma branching ratios
 - \rightarrow Problem is background from carbon (using CH₂ targets)

1st Science Case: ⁵⁹Fe(d,pg) [Matos et al.]

⁵⁹Fe produced at HFIR

1982	HEAO-3
1994	SMM
1997	CGRO
1998	GRIS
2004	RHESSI
2004	Deep sea sediments
2004	Meteorites
2005	INTEGRAL

2009 Lunar samples (Cook)

Apr 2012

S. D. Pain et al.

3. CARIBU+Gammasphere

Oct. 13, 20/11

• ²⁵²Cf fission fragments

• 10 MeV/u beam energy

Recoil selection by FMA

108 Germanium detectors

(n,p) reactions & vp process

Wanajo, Janka, Kubono, APJ **729** (2011) But maybe LEPP is proton-rich! →vp process [Fröhlich et al., PRC 96 (2006)] vi(n,p)⁵⁶Co relative to standard 10 • (n,p) rates are very important → ⁵⁶Ni, ⁶⁴Ge, ⁸⁶Se, . . . 10^{0} 4 Δ \triangle 0 10 38 10⁹ 36 10^{8} relative to solar ↑ ⊠ 34 10 32 10 10^{-10} 30 10 28 10^{3} 30 38 28 32 34 36 40 50 12080 60 110 $N \rightarrow$ mass number

J.C. Blackmon – LEPP Workshop

Summary

- Neutron reactions on unstable nuclei are likely important for the synthesis of heavy nuclei
 - →Can not be directly measured except for long-lived cases
- Hauser-Feshbach reaction rates are not always highly reliable
- Indirect approaches can improve the reliability of neutron rates Need:
 - →Improved radioactive beams
 - →Efficient gamma detection
 - →Theoretical support
- Many thanks to U.S. DOE, the Livermore group and my collaborators, especially: G. Arbanas, J.A. Cizewski, K.L. Jones, R.L. Kozub, M. Matoš, and S.D. Pain
- Congratulations to John Cowan
 - \rightarrow Thanks for so many inspiring contributions to the field

