# Nucleosynthesis modes in the HEW of SNe: Calculations vs. observations





EMMI Workshop, 2011

MAX-PLANCK-INSTITUT FÜR CHEMIE

Khalil Farouqi

#### r-Process observables today

## **Observational instrumentation**

- meteoritic and overall solar-system abundances
- ground- and satellite-based telescopes like *Imaging Spectrograph* (STIS) at Hubble, *HIRES* at Keck, and *SUBARU*

# • recent "Himmelsdurchmusterungen" HERES and SEGUE



**Elemental abundances in UMP halo stars** 

Solar system isotopic  $N_{r,\odot}$  "residuals"



#### Isotopic anomalies in meteoritic samples and stardust



Historical SS isotopic abundance breakdowns by s- and r-process

r-process "residuals": subtract N<sub>s</sub> from SS

$$N_{r,\odot} = N_{\odot} - N_{s}$$

# Still valid today?

**Necessity of separate "LEPP"?** 

## Until yesterday...

## **Historical r-process:**

Fe-seed (implies secondary process)

superposition of n<sub>n</sub>-components



#### our Basel – Mainz (FK<sup>2</sup>L) parameter studies

...largely site-independent!

T<sub>9</sub> and n<sub>n</sub> constant; instantaneous freezeout

#### "main" r-process

from A ≈ 130 peak up; early **primary** process; SN-II ?

#### "weak" r-process

from Fe via A  $\approx$  50 peak to A  $\approx$  120; later **secondary** process; explosive shell burning ?

Summary "waiting-point" model, see e.g. Kratz et al., Ap.J. 662 (2007)

## **Experimental situation for r-process progenitors of LEPP isotopes**

Today,



# **Experimental information on r-process nuclides**

Progress in Particle and Nuclear Physics 66 (2011) 358-362



Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp



#### Review

*r*-Process nucleosynthesis: Present status and future experiments at the FRS and ESR

## Iris Dillmann<sup>a,b,\*</sup>, Yuri A. Litvinov<sup>b,c</sup>

<sup>a</sup> II. Physikalisches Institut, Justus-Liebig Universität Giessen, Germany

<sup>b</sup> GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

<sup>c</sup> Max-Planck Institut für Kernphysik, Heidelberg, Germany

# "Up to now, one could only "scratch" the regions where the r-process takes place."

No comment !

## ... one of the presently favoured scenarios for the "r-process"

The **neutrino-driven wind** starts from the surface of the proto-neutron star with a flux of neutrons and protons.

As the nucleons cool  $(10 \ge T_9 \ge 6)$ , they combine to  $\alpha$ -particles + an excess of unbound neutrons.

Further cooling ( $6 \ge T_9 \ge 3$ ) leads to the formation of a few Fe-group "seed" nuclei in the so-called  $\alpha$ -rich freezeout.

Still further cooling  $(3 \ge T_9 \ge 1)$  leads to neutron captures on this seed composition, making the heavy **r-process** nuclei.



Neutrino cooling and neutrino-driven wind ( $t \approx 10$  s)

(Woosley & Janka, Nature, 2005)

#### Formation of r-process "seed"



Time evolution of temperature and density of HEW bubble (V<sub>exp</sub>=10,000 km/s)

## ⇒ extended "freeze-out" phase !





(Farouqi et al., 2009)

full dynamical network (extension of Freiburghaus model)

- time evolution of temperature, matter density and neutron density
- extended freezeout phase

"best" nuclear-physics input (Mainz, LANL, Basel)

- nuclear masses
- β-decay properties
- n-capture rates
- fission properties

#### Three main parameters:

| electron abundance | $Y_e = Y_p = 1 - Y_n$                                            |
|--------------------|------------------------------------------------------------------|
| radiation entropy  | <b>S</b> ~ T <sup>3</sup> /ρ                                     |
| expansion speed    | $v_{exp} \Rightarrow$ durations $\tau_{\alpha}$ and $\tau_{\mu}$ |

#### parameters correlated !

## **First results of dynamical r-process calculations**

Conditions for successful r-process
⇒ "strength" formula

$$\frac{Y_n}{Y_{Seed}} = k_{SN} V_{Exp} \left(\frac{S}{Y_e}\right)^3$$

(Farouqi, PhD Mainz 2005)

- Neutron-rich r-process seed beyond N=50 (<sup>94</sup>Kr, <sup>100</sup>Sr, <sup>95</sup>Rb...) ⇒ avoids first bottle-neck in classical model
- Initial r-process path at particle freezeout ( $T_9 \approx 3$ )  $\Rightarrow Y_n/Y_{seed} \le 150$
- Total process duration up to Th, U

 $\Rightarrow \tau_r \leq 750 \text{ ms}$ 

instead of  $\approx$  3500 ms in classical model

• Due to improved nuclear-physics input (e.g. N=82 shell quenching!)

⇒ max. S ≈ 280

to form full 3rd peak and Th, U

• Freezeout effects (late non-equilibrium phase)

 $\Rightarrow$  capture of "free" neutrons

 $\Rightarrow$  recapture of  $\beta$ dn-neutrons

## Parameters HEW model ⇒ Y(Z)





# Reproduction of $N_{r,\odot}$

# Superposition of S-components with Y<sub>e</sub>=0.45; weighting according to Y<sub>seed</sub>



| Entropy S | Process duration [ms]<br>FRDM ETFSI-Q |      | Remarks           |
|-----------|---------------------------------------|------|-------------------|
| 150       | 54                                    | 57   | A≈115 region      |
| 180       | 209                                   | 116  | top of A≈130 peak |
| 220       | 422                                   | 233  | REE pygmy peak    |
| 245       | 691                                   | 339  | top of A≈195 peak |
| 260       | 1290                                  | 483  | Th, U             |
| 280       | 2280                                  | 710  | fission recycling |
| 300       | 4310                                  | 1395 | u u               |





#### Superposition of HEW components $0.450 \le Y_e \le 0.498$

"weighting" of r-ejecta according to mass predicted by HEW model: for  $Y_e$ =0.400 ca.  $5x10^{-4} M_o$ for  $Y_e$ =0.498 ca.  $10^{-6} M_o$ 



"what helps…?" low Y<sub>e</sub>, high S, high V<sub>exp</sub>

For Y<sub>e</sub>≤ 0.470 full r-process, up to Th, U

#### For Y<sub>e</sub>≈ 0.490 still 3rd peak, but no Th, U

# For Y<sub>e</sub>= 0.498 still 2nd peak,

but no REE

Farouqi et al. (2009)

#### **Observations: Selected "r-enriched" UMP halo stars**



#### Sneden, Cowan & Gallino ARA&A, 2008

- CS 22892-052: Sneden et al. (2003)
- HD 115444: Westin et al. (2000)
- BD+17°324817: Cowan et al. (2002)
- \* CS 31082-001: Hill et al. (2002)
- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

Same abundance pattern at the upper end and ??? at the lower end

#### Two options for HEW-fits to UMP halo-star abundances:

- const. Y<sub>e</sub> = 0.45, optimize S-range;
- $\bullet$  optimize  $Y_{\rm e}$  with corresponding full S-range.



## incomplete main r-process

Sr – Cd region overabundant by a mean factor ≈ 8 relative to SS-r

# full main r-process

Sr – Cd region **underabundant** by a mean factor ≈ 2 relative to SS-r

(assumption by Travaglio et al. that this pattern is unique for all UMP halo stars)
"missing" part to SS-r = LEPP



From Ge – Zr via Ag to Eu 🥂 different nucleosynthesis modes

HEW with  $Y_e = 0.45$ ;  $v_{exp} = 7500$ 

| ELEMENT          | Y(Z) as fct. of S in %       |                                       |                                         |  |
|------------------|------------------------------|---------------------------------------|-----------------------------------------|--|
|                  | $10 \le S \le 100$           | $100 \le S \le 150$                   | $150 \le S \le 300$                     |  |
| <sub>32</sub> Ge | 99                           | 1.2                                   | -                                       |  |
| <sub>38</sub> Sr | 98                           | 1.4                                   | 0.3                                     |  |
| $_{40}$ Zr       | 95                           | 4.7                                   | 0.3                                     |  |
| <sub>42</sub> Mo | 64                           | 32                                    | 4.7                                     |  |
| <sub>47</sub> Ag | 3.7                          | 71                                    | 25                                      |  |
| <sub>52</sub> Te | 0.001                        | 10                                    | 90                                      |  |
| <sub>56</sub> Ba | -                            | -                                     | 100                                     |  |
|                  | normal α -rich<br>freezeout  | n-rich α-freezeout                    |                                         |  |
|                  | CP component<br>uncorrelated | weak-r component<br>weakly correlated | main-r component<br>strongly correlated |  |

#### Halo stars vs. HEW model: "LEPP" elements

LEPP-abundances vs. CP- enrichment (Zr)



HEW (10 < S < 280) WP (Fe seed;  $10^{20} < n_n < 10^{28}$ ) weak-r (Si seed;  $n_n \approx 10^{18}$ )

**HEW** reproduces high-Z LEPP observations (Sr – Sn); underestimates low-Z LEPP observations (Cu – Ge)

additional nucleosynthesis processes ?

(e.g. Fröhlich et al. vp-process; Pignatari et al. rs-process; El Eid et al. early s-process)

(Farouqi, Mashonkina et al. 2008)

## **Elemental abundance ratios UMP halo stars**



## Halo stars vs. HEW model: Sr/Y/Zr as fct. of [Fe/H], [Eu/H] and [Sr/H]



#### **Observations: Correlation Ge, Zr with r-process?**

#### Ap.J., 627 (2005)

HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN METAL-POOR GALACTIC HALO STARS

John J. Cowan,<sup>1</sup> Christopher Sneden,<sup>2</sup> Timothy C. Beers,<sup>3</sup> James E. Lawler,<sup>4</sup> Jennifer Simmerer,<sup>2</sup> James W. Truran,<sup>5</sup> Francesca Primas,<sup>6</sup> Jason Collier,<sup>1</sup> and Scott Burles<sup>7</sup>

Received 2004 September 8; accepted 2005 February 24





Correlation between the abundance ratios [Ge/Fe] and [Eu/Fe]. The dashed line indicates a direct correlation between Ge and Eu abundances. As in the previous Figure, the arrow represents the derived upper limit for CS 22892-052. The solid green line at [Ge/Fe] = -0.79 is a fit to the observed data. A typical error is indicated by the cross.



Correlation between the abundance ratios of [Zr/Fe] (obtained exclusivley with HST STIS) and [Eu/Fe]. The dashed line indicates a direct correlation between Zr and Eu abundances.



Ge okay! 100% CPR Zr two components?

Relative abundances [Ge/H] displayed as a function [Fe/H] metallicity for our sample of 11 Galactic halo stars. The arrow represents the derived upper limit for CS 22892-052. The dashed line indicates the solar abundance ratio of these elements: [Ge/H] = [Fe/H], while the solid green line shows the derived correlation [Ge/H]=[Fe/H]=-0.79. A typical error is indicated by the cross.

"... the Ge abundances...

track their Fe abundances very well. An explosive process on iron peak nuclei (e.g. the  $\alpha$ -rich freezeout in SNe), rather than neutron capture, appears to have been the dominant mechanism for this element..."

## Halo stars vs. HEW model: Zr/Fe/Eu vs. [Eu/Fe], [Fe/H] and [Eu/H]



Mashonkina (2009); Farouqi (2009)

From Ge – Zr via Ag to Eu 🥂 different nucleosynthesis modes

HEW with  $Y_e = 0.45$ ;  $v_{exp} = 7500$ 

| ELEMENT          | Y(Z) as fct. of S in %       |                                       |                                         |  |
|------------------|------------------------------|---------------------------------------|-----------------------------------------|--|
|                  | $10 \le S \le 100$           | $100 \le S \le 150$                   | $150 \le S \le 300$                     |  |
| <sub>32</sub> Ge | 99                           | 1.2                                   | -                                       |  |
| <sub>38</sub> Sr | 98                           | 1.4                                   | 0.3                                     |  |
| $_{40}$ Zr       | 95                           | 4.7                                   | 0.3                                     |  |
| <sub>42</sub> Mo | 64                           | 32                                    | 4.7                                     |  |
| <sub>47</sub> Ag | 3.7                          | 71                                    | 25                                      |  |
| <sub>52</sub> Te | 0.001                        | 10                                    | 90                                      |  |
| <sub>56</sub> Ba | -                            | -                                     | 100                                     |  |
|                  | normal α -rich<br>freezeout  | n-rich α-freezeout                    |                                         |  |
|                  | CP component<br>uncorrelated | weak-r component<br>weakly correlated | main-r component<br>strongly correlated |  |

#### Halo stars vs. HEW-model predictions: Pd

#### Pd/Sr and Pd/Eu different from Sr/Y/Zr



r-poor stars ([Eu/H] < -3) indicate TWO nucleosynthesis components for <sub>46</sub>Pd: Pd/Sr ⇔ uncorrelated, Pd/Eu ⇔ (weakly) correlated with "main" r-process

## **Observations of Pd & Ag in giant and dwarf stars**



#### indication of different production processes (Sr – charged-particle, Ag – weak-r, Eu – main r-process)



# Pd and Ag are produced in the same process

(predominantly) weak r-process

## All observations in agreement with our HEW predictions !

(PhD-thesis C.J. Hansen, LMU 2011; and this workshop)

Instead of restriction to a single Y<sub>e</sub> with different S-ranges,

probably more realistic, choice of different Y<sub>e</sub>'s with corresponding full S-ranges



39**Y represents CPR-component** (historical **"weak"** n-capture r-process)

## 57La represents "main" r-process

# **Caution!**

La always 100 % scaled solar; log(La/Eu) trend correlated with sub-solar Eu in "r-poor" stars

Transition from CP-component to "weak" n-capture r-process



# SAGA data base: [X/Fe] vs. [Eu/Fe] (II)



Th/Pb r-chronometer ? (Frebel, Mashonkina & Kratz)

# Summary

# **Still today**

- there is no selfconsistent hydro-model for SNe, that provides the necessary astrophysical conditions for a full r-process;
- therefore, parameterized dynamical studies (like our HEW approach) are still useful to explain r-process observables;
- astronomical observations & HEW calculations indicate that SS-r and UMP halo-star abundance distributions are superpositions of 3 nucleosynthesis components: charged-particle, weak-r and main-r
- the yields of the CP-component (up to Zr) are largely uncorrelated with the "main" r-process; the yields of the weak-r component (Mo to Cd) are partly correlated with the "main" r-process; elements ≥ Te belong to the "main" r-process
- no UMP halo-star has been observed so far without a CP- (LEPP) component

# therefore, no separate LEPP-component is required !

# @John: Enjoy your emeritus stage ! your Mainz collaborators K.-L., Bernd, Khalil & Oliver

# Co-production of Light p-, s- and r-Process Isotopes in the Neutrino-Driven Wind of Type II Supernovae

#### Oliver Hallmann, Khalil Farouqi, Ulrich Ott, Karl-Ludwig Kratz

Max-Planck-Institut für Chemie, Otto-Hahn-Institut, Mainz, Germany

We have performed large-scale nucleosynthesis calculations within the high-entropy-wind (HEW) scenario of core-collapse supernovae with the primary aim to constrain the conditions for the production of the classical 'p-only' isotopes of the light trans-Fe elements in the Solar System (SS). We find that in moderately neutron-rich winds, sizeable abundances of p-, s- and r-process nuclei between <sup>64</sup>Zn and <sup>104</sup>Ru are co-produced. Taking the peculiar compositions of the 7 stable Mo isotopes in (i) the SS and (ii) in specific presolar SiC X-grains as particularly challenging examples, our results show that the HEW ejecta can reproduce both, (i) the SS-ratio of <sup>92</sup>Mo/<sup>94</sup>Mo with isotopic yields per SN event in the  $10^{-8}$  M<sub> $\odot$ </sub> range, and (ii) the puzzling grain data of the Argonne / Chicago group. These results are in principal agreement with earlier studies, and may provide further means to revise the abundance estimates in the historical "light-p", "weak-s" and "weak-r" process regions.

|                                            | Isotopic abundance ratios |           |                   |         |  |
|--------------------------------------------|---------------------------|-----------|-------------------|---------|--|
| Isotope pairs                              | Solar System              | This work | $\gamma$ -process | EC SN   |  |
| (nucleosynth. origin)                      | [10]                      | [22]      | [13]              | [16]    |  |
| <sup>64</sup> Zn(p)/ <sup>70</sup> Zn(r)   | 78.4                      | 79.4      | 10.5              | 6.6 E+7 |  |
| <sup>70</sup> Ge(s,p)/ <sup>76</sup> Ge(r) | 2.84                      | 4.61      | 2.53              | 2.8 E+9 |  |
| <sup>74</sup> Se(p)/ <sup>76</sup> Se(s)   | 9.42 E-2                  | 9.09 E-2  | 0.128             | 0.567   |  |
| <sup>74</sup> Se(p)/ <sup>82</sup> Se(r)   | 0.101                     | 0.113     | 0.120             | 6.1 E+9 |  |
| <sup>78</sup> Kr(p)/ <sup>82</sup> Kr(s)   | 3.11 E-2                  | 2.92 E-2  | 1.97 E-2          | 0.654   |  |
| <sup>78</sup> Kr(p)/ <sup>86</sup> Kr(r,s) | 2.11 E-2                  | 7.9 E-4   | 5.8 E-3           | 5.7 E+4 |  |
| <sup>84</sup> Sr(p)/ <sup>86</sup> Sr(s)   | 5.66 E-2                  | 4.00 E-2  | 4.05 E-2          | 0.240   |  |
| $^{90}$ Zr(s,r)/ $^{96}$ Zr(r,s)           | 18.4                      | 5.56      | 10.4              | > E+20  |  |
| <sup>92</sup> Mo(p)/ <sup>94</sup> Mo(p)   | 1.60                      | 1.86      | 1.55              | 49.4    |  |
| <sup>96</sup> Ru(p)/ <sup>98</sup> Ru(p)   | 2.97                      | 2.57      | 2.54              | 9.06    |  |

Table 1: Selected isotopic abundance ratios of light trans-Fe elements between Zn (Z=30) and Ru (Z=44).

|                                     | Isotopic abundance ratios |      |           |           |
|-------------------------------------|---------------------------|------|-----------|-----------|
| <sup>x</sup> Mo/ <sup>97</sup> Mo   | SiC X-grains              | SS   | "n-burst" | This work |
| <sup>92</sup> Mo/ <sup>97</sup> Mo  | < 0.19                    | 1.55 | 1.4 E-3   | 0.10      |
| <sup>94</sup> Mo/ <sup>97</sup> Mo  | < 0.10                    | 0.97 | 3.3 E-3   | 1.3 E-2   |
| <sup>95</sup> Mo/ <sup>97</sup> Mo  | 1.83                      | 1.66 | 1.54      | 3.65      |
| <sup>96</sup> Mo/ <sup>97</sup> Mo  | $\equiv 0.05$             | 1.74 | 1.0 E-2   | 1.6 E-3   |
| <sup>98</sup> Mo/ <sup>97</sup> Mo  | 0.71                      | 2.52 | 0.38      | 1.38      |
| <sup>100</sup> Mo/ <sup>97</sup> Mo | 0.13                      | 1.01 | 9.6 E-2   | 0.32      |

**Table 2:** Molybdenum isotopic abundance ratios (<sup>x</sup>Mo/<sup>97</sup>Mo). The initial data were obtained by RIMS measurements of the individual SiC grains [18]. They indicate a mixture of normal (SS) Mo and an (unknown) exotic component. The respective compositions have been derived by weighted fits to the grain data (two outliers omitted), forced through the respective SS value and extrapolated to  ${}^{96}Mo/{}^{97}Mo \equiv 0.05$ . They are compared with the SS values, the predictions of the "neutron-burst" model [20] and the CP-component in moderately neutron-rich SN winds (for details, see [22]).

#### PoS NIC-XI (2010) & PASA 26, 194 (2009)

# Isotopic information on LEPP elements from presolar grains

SiC mainstream grains  $\rightarrow$  He-IS in AGB stars



# 3-isotope-plot:

The grains are a **mixture** of material from the **nucleosynthesis site** and **SS-like material**!

SiC-X grains  $\rightarrow$  Supernovae origin

# Measurements by the Chicago group on SiC-X grains for **Zr, Mo & Ru**

# What nucleosynthesis process works as a mixing-component for all isotopic ratios?

 $\rightarrow$  Isotopic composition obviously <u>not</u> main-r or s !



Marhas et al. (2007); data from Pellin et al.

# Isotopic information on LEPP elements from presolar grains

Mo in SiC-X grains = Mixture of v-driven wind & SS



Data from Pellin et al. (2000, 2006)

SiC-X grains are a mixture of material from a supernova and SSlike material in the ISM !

#### Analytic procedure:

- Perform regressions for all isotopic ratio permutations
- thereby: pin-point the isotopic composition of the mixing component
- optimize the astrophysical conditions in the υ-driven wind to find the best fit for the required isotopic composition
- check Zr & Ru under the same conditions

#### Result:

The astrophysical conditions for the best fit of the isotopic composition of all 3 elements are  $Y_e = 0.45$  and  $s = 0...70 k_B$ 



- Charged-particle component of the υ-driven wind
- No neutron-capture process !

Hallmann, Farouqi, Kratz, Ott (2011) unpubl.