Longitudinal manipulations with intensity effects in SIS-100

Yao-shuo Yuan, Oliver Boine-Frankenheim, TU Darmstadt Vladimir Kornilov, GSI

Outline

- Introduction
- Choice of key parameters: rf voltage ramps, phases and merging time
- Intensity effects: Longitudinal space charge and cavity beam loading
- Simulation of longitudinal manipulation of proton bunches with optimized parameters (two examples)
- Simulation of heavy ion (U²⁸⁺) bunch manipulation including fast bunch rotation with optimized parameters
- Summary

Introduction

- In SIS-100, for proton operation, four bunches are merged to one bunch:
 - 1) First merging:
 - 2) Batch compression: 2 bunches compressed (h=5 to 10)

3) Second merging: 2 bunches (h=10) \rightarrow 1 bunch (h=5)

Choice of key parameters

- Bunch merging with constant bunching factor
 - bunch length → Bunching factor defined as $B_f =$ bucket length
 - Longitudinal emittance **Bunch length**
 - $\hat{l}_f = 2\hat{l}_i$

Momentum spread $\hat{\delta_f} = \hat{\delta_i}$

Matched $V_{\rm rf,i} = 2V_{\rm rf,f}$ **RF** voltage

- RF phase
$$\phi_1=0, \phi_2=90^{\circ}$$

$$\begin{split} \epsilon_{L,f} &= 2\epsilon_{L,i} \\ \hat{l}_f &= 2\hat{l}_i \\ \hat{\delta}_f &= \hat{\delta}_i \\ &= 2V_{\mathrm{rf},f} = 66kV \\ & \varsigma_{1}^{22} \\ & \varsigma_{1}^{22} \\ & \gamma_{\mathrm{rf},i} \\ & \gamma_{\mathrm$$

 \sim

 $V_{\rm rf0.5}$

 $t_{\rm m}$

Choice of parameters for bunch merging

- Merging time can be determined via simulation results
 - → ~100 ms (20Ts) can ensure a good emittance conservation

June 24 2021 | Yao-shuo Yuan |

4

Choice of parameters for batch compression

Modulation effect

• For short bunch train, modulation effect is not a problem

 The emittance growth is less sensitive to the rf voltage than during bunch merging. Equal voltage amplitude on harmonic is chosen.

compression

on h = 5 and h = 6 (at V5 = V6) Black h=5; Blue h=6; Red combined

June 24 2021 | Yao-shuo Yuan |

Intensity effects – longitudinal space charge

- Space charge can be well-compensated via increasing external rf voltage
- Space charge $\Sigma_{\rm sc} =$ parameter

 → e.g. For bunch merging on SIS-100, (rms emittance 6.26 m × 0.0011)

s.c.voltage

$$V_{\rm rf,sc,i} = 66.0 + 12.7 = 78.7 \text{ kV}$$

 $V_{\rm rf,sc,f} = 33.0 + 6.3 = 39.3 \text{ kV}$
 $\Sigma_{\rm sc} = 0.19$

Final emittance under different merging time without/with s.c.

Intensity effects – cavity beam loading

- Beam loading can be evaluated by RLC model
 - → e.g. Initial beam loading voltage of four bunches on SIS-100,

 $V_{\rm bl0} = 7.61, 9.79, 15.1, 16.2 \text{ kV}$

• Beam loading matching shifts

$$\Delta\phi_{\rm bl} = \operatorname{asin}(\frac{V_{\rm bl0}}{V_{\rm rf0}})$$

• Beam loading parameter

 $\Sigma_{\rm bl} = \frac{V_{\rm bl0}}{V_{\rm rf0}}$

to evaluate the contribution of the beam loading

Parameters [unit]	Symbols	Initial value
Resistance $[\Omega]$	R_{sh}	2000
Resonant freq. [Mhz] on h=10	f _{res,h=10}	2.72
Resonant freq. [Mhz] on h=5	f _{res,h=5}	1.36
Quality factor on h=10	Q _{h=10}	10.6
Quality factor on h=5	Q _{h=5}	5.3

Beam loading parameters in SIS-100

• The cavity number should be as few as possible to minimize the beam loading effect

Bunch merging with intensity effects

- Choice of merging time
 Better merged
 Longer
 Longer time
 Longer beam
 Loading effect
 - → Preferred:100 ms
- Two beam loading compensation shifts
 - "Matching shift" for initial matching

$$\Delta \phi_{\rm bl} = \operatorname{asin}(\frac{V_{\rm bl0}}{V_{\rm rf0}}) = \operatorname{asin}(\Sigma_{\rm bl})$$

 "Symmetry shift" for keeping the merging to be symmetrical

Final emittance growth with beam loading and space charge

Red: with initial matching shift Blue: with both shifts (reduced emittance)

$$\Delta \phi_{\rm h} = \frac{1}{n_b} \sum_{j=1}^{n_b} \Delta \phi_{\rm bl,j}$$

(A physics paper to be submitted.)

Bunch merging with intensity effects

• Simulation results

Upper: with matching shift Lower: with both shifts

- The emittance growth reduces with the symmetry shift.
- Merging time: 100 ms

Batch compression with intensity effects

An example of proton bunch manipulation

An example of proton bunch manipulation

Parameters [unit]	Initial	End of first merging	End of batch compression	End of second merging	
rf voltage [kV]	78.7	39.35	39.35	39.35	
Harmonic number	10	5	10	5	
Bare synchrotron tune [×10 ⁻⁴]	8.0	4.0	5.6	4.0	
Compression time[ms]	-	100	100	100	
Phase on h ₁₀	0	0	180+180	0	
Phase on h_9	-	-	144+162	-	
Phase on h ₈	-	-	108+144	-	
Phase on h ₇	-	-	72+126	-	
Phase on h ₆	-	-	36+108	-	
Phase on $h_{_5}$	90+4.2	0	0+90	90	
Cavity numbers	8	8	6	6	

Main parameters for the proton bunch manipulation

Second example of proton bunch manipulation

Second example of proton bunch manipulation

Simulation result

Particle distribution in the phase space during bunch manipulation

Red: Second example

Blue: First example

Dashed line: ideal case Solid line: with intensity effects

• The emittance growth is not sensitive to the initial emittance

₹¥

Proposed schemes for heavy ion (U²⁸⁺) bunch manipulation

Proposed heavy ion manipulation scenario after optimization

Proposed rf voltage ramps for heavy ion manipulation

- For 1st merging and batch compression: voltages in h=5 increase fast to provide a large bucket area (acceptance).
- For 2nd merging, voltages in h=5 halved to generate a longer bunch length
- For 2nd batch compression h=5 to 6, distance decreased

Design of fast bunch rotation

- Large distance leads to large filamentation (limited voltage 360 kV)
 - Rotation of two bunches after batch compression

- Beam loading can dampen the filamentation
 - Beneficial effects

(Deserves a further study)

Parameter [unit]	Symbol	Value
Q-factor	Q	2
Shunt impedance [Ohm]	R_{sh}	1000
Cavity number	n _{cav}	9
Maximum voltage [kV]	V _{rf}	40
Harmonic	h	2
Rotation voltage	V _{rotation}	360

Model of bunch compression cavity

Design of fast 90° bunch rotation

• Main parameters for the fast bunch rotation

Parameters [unit]	Initial	1 st bunch merging	1 st batch compression	2 nd bunch merging	2 nd batch compression	Fast rotation
rf voltage [kV]	8.1	32.4	64.8	32.4	38.9	360.0
harmonic	10	5	10	5	6	2
cavity numbers	3	3	5	5	4	9
rms bunch length [m]	11.6	25.6	21.4	25.3	24.2	6.1
rms momentum spread [×10 ⁻⁴]	1.1	1.4	2.0	3.3	4.1	37.5

More detailed parameters can be found in the technical report

Simulation results of fast bunch rotation

Summary

- Longitudinal bunch manipulation (bunch merging and batch compression) in SIS-100 including high intensity effect are investigated.
- Bunch merging scenario with tolerable emittance growth are demonstrated
- Manipulation of four proton bunches towards a single bunch in SIS-100 is shown, using an example ramp.
- Manipulations of eight U28+ bunches towards a single bunch, including fast bunch rotation: an optimized scenario to meet the user requirements
- Optimized ramp parameters are used to minimize the emittance growth caused by intensity effects.

The report available at https://repository.gsi.de/record/238378

Thanks for your attention!

Appendix I Space charge calculation (Elliptical model)

• With space charge, the rf voltage should be increased to compensate the space charge defocusing force (voltage)

Appendix II Beam loading calculation model

Appendix III Beam loading shifts

- The matching shifts $\Delta \Phi_{bl,i}$ for bunches are different, since the b.l. voltage depends on the positions
- However, $\Delta \Phi_{\rm bLi}$ break the symmetry during bunch merging
- To compensate the symmetry, the **symmetry shift** $\Delta \Phi_{hf}$ is added on the harmonics (cavities), satisfying

$$\Delta\phi_{\rm hf} = \frac{1}{2} (\Delta\phi_{\rm bl,1} + \Delta\phi_{\rm bl,2})$$

$$\bigstar$$
 Symmetry shift

Appendix IV Beam loading matching

Appendix V Simulation of proton bunch manipulation without intensity effects

• The emittance growth is < 3% with total time of 300 ms.

1st bunch merging:100 ms Batch compression:100 ms

2nd bunch merging:100 ms

Z×