Contribution submission to the conference SMuK 2021

 $\Lambda_{\rm c}^+$ cross section in p-Pb collisions down to $p_{\rm T}=0$ at $\sqrt{s_{
m NN}}=5.02$ TeV measured with ALICE — \bullet Annalena Sophie Kalteyer — GSI Helmholtz Centre for Heavy Ion Research

In this contribution, the latest ALICE measurement of Λ_c^+ production performed down to $p_{\rm T}=0$ in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV is presented. This allows to show the first measurement of Λ_c^+/D^0 and $\Lambda_{\rm c}^+$ nuclear modification factor $(R_{\rm pPb})$ down to $p_{\rm T}=0$ in this system. The baryon-to-meson ratio is significantly enhanced with respect to the one in e⁺e⁻ collisions, suggesting that the charm fragmentation is not a universal process across different collision systems. Furthermore, the ratio as a function of the transverse momentum is shifted to higher $p_{\rm T}$ in p-Pb collisions with respect to pp collisions. The reason for this momentum shift could be due to a modification of the charm hadronisation mechanism and/or the presence of radial flow in p-Pb collisions. Typically this is observed in heavy-ion collisions where a hot deconfined medium is created. In addition, the $R_{\rm pPb}$ is useful to investigate possible initial state effects such as shadowing in the collisions of a proton with a heavy nucleus. $R_{\rm pPb}$ can help disentangling initial from final state effects, which would involve the presence of a medium. The results are compared with theoretical calculations including initial and final state effects.

Part: HK

Type: Vortrag; Talk

Topic: Schwerionenkollisionen und QCD Phasen

Email: annalena.sophie.kalteyer@cern.ch