

HISPEC/DESPEC Collaboration meeting 4th-5th October 2021

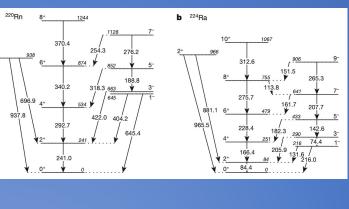
Investigation of Po-Fr nuclei in the south-east frontier of the A~225 island of octupole deformation

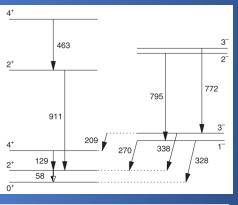
Marta Polettini for the S460 collaboration

Università degli Studi di Milano INFN Sezione di Milano

- Case study: 220<A<230 Po-Fr nuclei
 - Octupole deformation in the A~222 region
 - Aims of the experiment
- Experiment
 - The DESPEC setup
 - Experiment realization
- On-going analysis:
 - Alpha decay in Rn isotopes
 - Calibration and ion identification optimisation
 - Future steps

- Case study: 220<A<230 Po-Fr nuclei
 - \circ Octupole deformation in the A~222 region
 - Aims of the experiment
- Experiment
 - The DESPEC setup
 - Experiment realization
- On-going analysis:
 - Alpha decay in Rn isotopes
 - Calibration and ion identification optimisation
 - Future steps

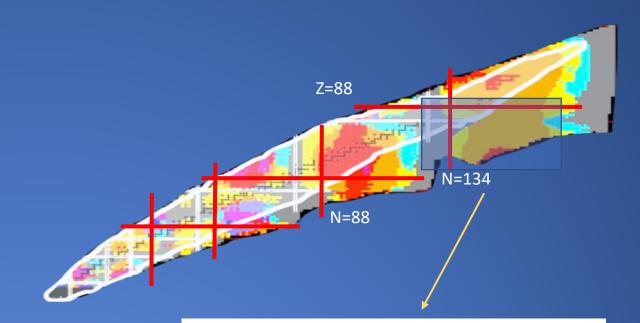

Island of octupole deformation: actinide region


- The Rn-Th (Z=88-90) actinide nuclei around mass number A~225 delimit the region of the nuclear chart where the strongest octupole correlations are manifested.
- In general, there is a dearth of experimental information on the structure of heavy nuclei in the 220<A<230 transitional region between the Z=82 closed-shell regime and the south-east corner of the A~222 IOD.
- V under de la construction de la
- Direct measurements of octupole correlations were performed recently, finding evidences for typical decay pattern and enhanced transitions

 ^a 2²⁰Rn 8⁻ 12²⁴

For example:

- ²²⁰Rn and ²²⁴Ra from L.P. Gaffney et al.
 L.P. Gaffney et al., Nature 497,199–204 (2013)
- ²²⁸Th from M.M.R. Chishti et al.
 M.M.R. Chishti et al., Nature Physics 16, 853–856 (2020)



Aims of the experiment

Octupole deformation around A~225

- Beta delayed and fast-timing spectroscopy:
 - Locate low-lying 1⁻ and 3⁻ states
 - Measure reduced transition strengths

Test of nuclear models for r process

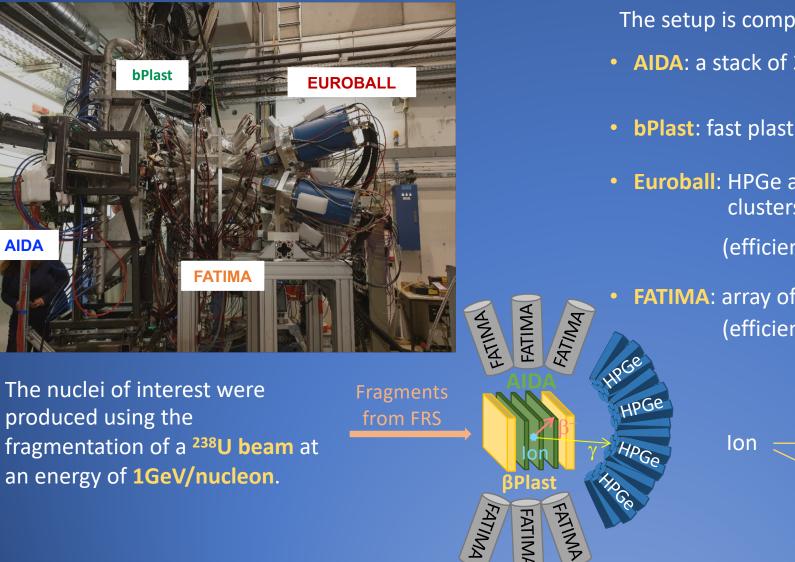
- Measurement of ground state half-lives
- Determination of possible competing α branches
- Beta-delayed gamma spectroscopy to:
 - Investigate low-lying structure in daughters
 - \circ Determine apparent I_{β} and logft
- Shape isomers in ^{220,222}Po
 - Delayed isomer spectroscopy
 - Measure lifetimes of super-deformed 2⁺ states

Aims of the experiment

Octupole deformation around A~225

- Beta delayed and fast-timing spectroscopy:
 - Locate low-lying 1⁻ and 3⁻ states
 - Measure reduced transition strengths

• Test of nuclear models for r process


- Measurement of ground state half-lives
- Determination of possible competing α branches
- Beta-delayed gamma spectroscopy to:
 - Investigate low-lying structure in daughters
 - \circ Determine apparent I_{β} and logft
- Shape isomers in ^{220,222}Po
 - Delayed isomer spectroscopy
 - Measure lifetimes of super-deformed 2⁺ states

238U @ 1AGeV + Be (1624 mg/cm²) Setting 225At								
Parent Nucleus	t _{1/2}	energy 1st excited state in daughter	half-life 1st exc state in daughter	ppd @ AIDA				
228Rn	65 s	unknown	unknown	2,80E+04				
227Rn	20.8 s	2.74 keV	unknown	1,29E+05				
226Rn	7.4 m	unknown	unknown	8,85E+04				
225Rn	4.66 m	28.55 keV	unknown	1,01E+05				
226At	unknown	unknown	unknown	1,79E+04				
225At	unknown	unknown	unknown	7,19E+04				
224At	76 s	unknown	unknown	1,98E+05				
223At	50 s	unknown	unknown	1,86E+05				
222At	54 s	186.2	0.32 ns	2,53E+05				
221At	2.3 m	30 keV	unknown	2,57E+04				
223Po	unknown	unknown	unknown	6,90E+03				
222Po	550 s	unknown	unknown	2,03E+04				
221Po	112 s	unknown	unknown	2,97E+04				
220Po	unknown	unknown	unknown	5,26E+04				

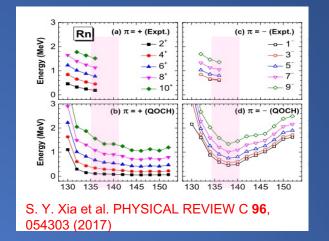
- Case study: 220<A<230 Po-Fr nuclei
 - Octupole deformation in the A~222 region
 - Aims of the experiment
- Experiment
 - The DESPEC setup
 - Experiment realization
- On-going analysis:
 - Alpha decay in Rn isotopes
 - Calibration and ion identification optimisation
 - Future steps



FRS+DESPEC at GSI-FAIR: the β decay station

The setup is composed of:

- AIDA: a stack of 3 DSSSD detectors
- **bPlast**: fast plastic detector
- **Euroball**: HPGe array for gamma detection four 7-fold clusters (efficiency 2% at 1 MeV)
- **FATIMA**: array of 36 LaBr₃(Ce) detectors (efficiency 2.9% at 1 MeV)


Challenges of S460 experiment

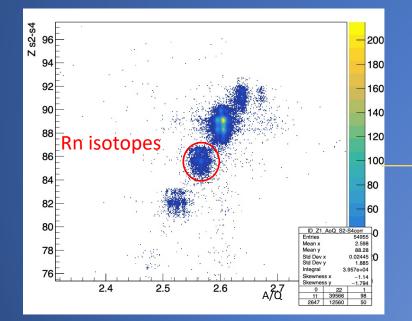
Critical aspects:

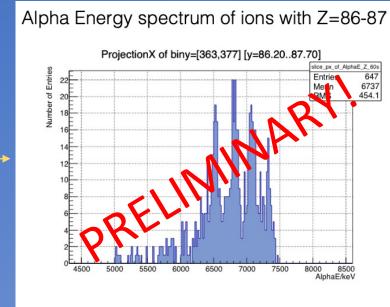
- Proximity to primary beam
- Strong production of fission fragments

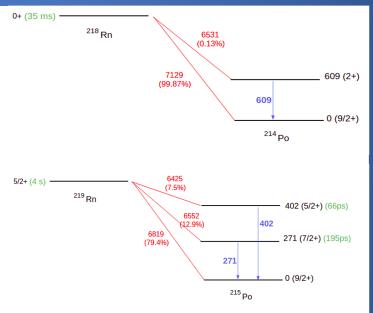
No known isomers in the region —— **Test settings on alpha emitters**

	or code				Q _{β-}	QEC	Q _{β+} S	-		ΔQa	S _{2n}		S _{2p}	Q28-	Q _{2EC}
Q	β-2n	BE/A	(BE-LDM	Fit)/A Pa	air. gap	E1st ex. s	t. E ₂₊ E ₃	- E4+	E4+/E2+	β2	B(E2) ₄₂ /B(I	E2)20	σ(n,γ)	σ(n,F)	2350
z	2231 22.00 β-: 99. α: 6.01	99%	224Fr 3.33 M β-: 100.00%	225F) 3.95 Μ β-: 100.0	м	226Fr 49 S 100.00%	227H 2.47 β-: 100.	м	228Fr 38 S β-< 100.0		229Fr 50.2 S β-: 100.00%	19	0Fr 0.1 S 00.00%	231 17.6 β-: 100	S
86	222H 3.823 π: 100.	Rn 5 D	223Rn 24.3 M β-: 100.00%	224Rn 107 M β-: 100.00%		225Rn 4.66 M - 100.00%	226Rn 7.4 M β-: 100.00%		227Rn 20.2 S β-: 100.00%		228Rn 65 S β-: 100.00%	229Rn 12.0 S β-: 100.00%		230Rn >300 NS β-: 100.00%	
85	221/ 2.3 1 β-: 100.	м	222At 54 S β-: 100.00%	223A 50 S β-: 100.0		224At 1.3 M : 100.00%	2254 >300 β-: 100.	NS	226At >300 N β-: 100.00	s	227At >300 NS β-: 100.00% β-n	>30	8At 00 NS 00.00%	229 >300 β-: 100 β-	NS .00%
84	220] >300 β-: 100	NS	221Po 112 S β-: 100.00%	222Pc 550 S β-: 100.0	5 >	223Po 300 NS 100.00%	224H >300 β-: 100.	NS	225Po >300 N β-: 100.00	s	226Po >300 NS β-: 100.00%	>30	7Po 00 NS 00.00%		
83	219 22 β-: 100	S	220Bi >300 NS β-: 100.00%	221B >300 h β-: 100.0 β-n	VS > 0% β-	222Bi •300 NS • 100.00%	2231 >300 β-: 100. β-:	NS 00%	224Bi >300 N β-: 100.00 β-n	s					
	136		137	138		139	140		141		142	14	43	N	

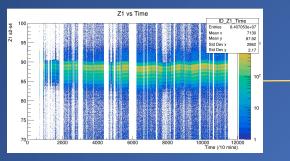
Choosing the FRS settings proved to be very challenging:

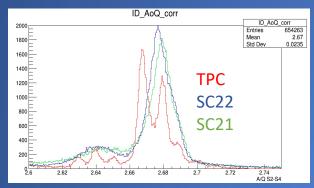

- **Challenging ion** $-\beta-\gamma$ correlations
 - ----- first experiment with β decay measurement as the primary goal!
- Long half-lives (~min)
- Little known
 - difficulty in providing a test of the correlation method


- Case study: 220<A<230 Po-Fr nuclei
 - Octupole deformation in the A~222 region
 - Aims of the experiment
- Experiment
 - The DESPEC setup
 - Experiment realization
- On-going analysis:
 - Alpha decay in Rn isotopes
 - Calibration and ion identification optimisation
 - Future steps


Preliminary results: alpha decay of ^{218,219}Rn

- ^{218,219}Rn to prove correct implantation and correlations
- First time the DESPEC setup was used to measure alpha decay!
- We can provide a validation of pre-existing measurements




Courtesy of N. Hubbard, H.M. Albers

Marta Polettini

FRS analysis: ion identification improvement

ID_AoQ_corr

Corrected

Not corrected

1600

1400

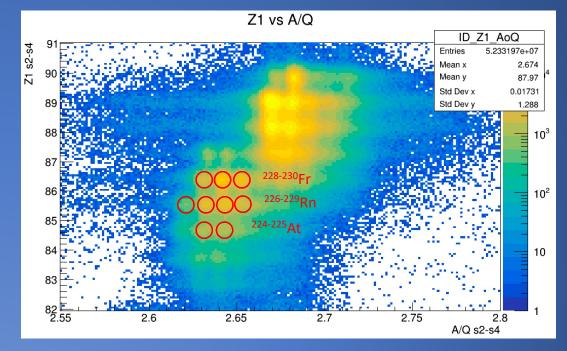
1200

1000

800

600 400 ID AoQ cor 424068 2.67

0.01981

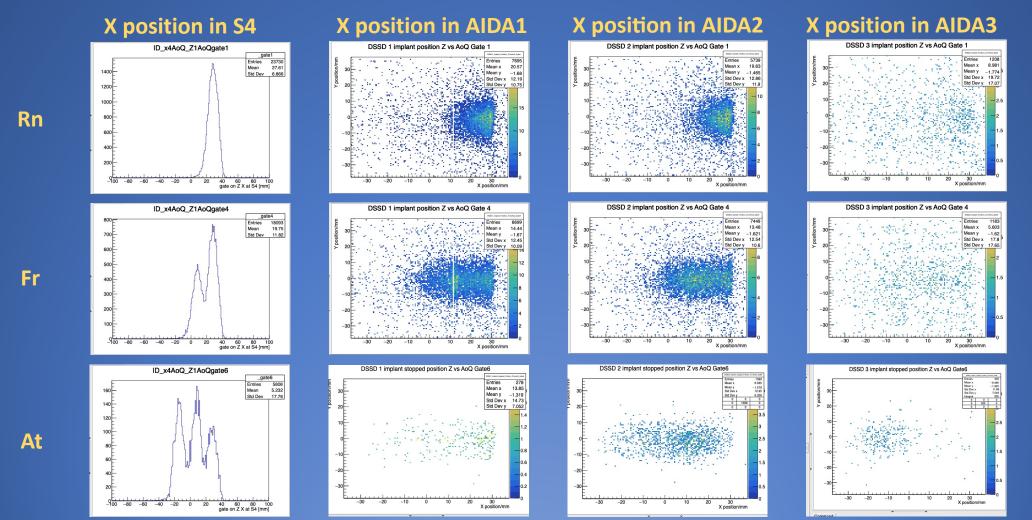

Entries

Std Dev

Mean

Resolution comparison for A/Q

Angle correction for position at the final focal plane

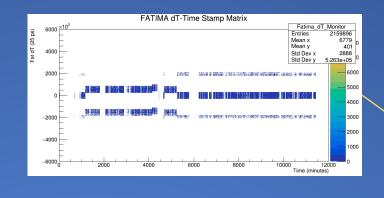


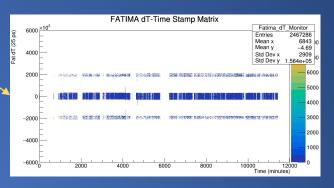
Preliminary Particle IDentification plot: starting point for ion-beta correlations

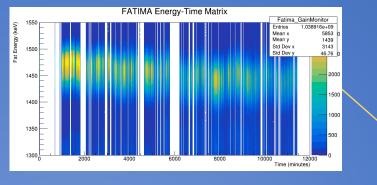
4th-5th October 2021

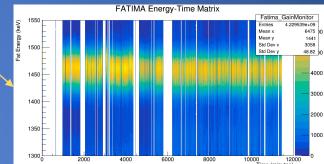
Implantation position in AIDA

Implantation profile for ions of interest and correlation with position @ S4




Marta Polettini


On-going analysis


- Fragment Separator:
 - TOF calibration
 - \circ $\,$ Position calibration $\,$
- DSSSDs:
 - Energy calibration
 - Implementation of ion-beta correlation codes
- Plastic scintillator:
 - Disentanglement of beta and ion signal
 - Position sensitivity
- Gamma-ray detectors (HPGe and LaBr₃(Ce)):
 - o Time alignment
 - Gain matching
 - Absolute efficiency calculations

Next step: ion $-\beta - \gamma - \gamma$ correlations!

Conclusions

The project aims at performing an experimental study of octupole shapes in heavy actinide nuclei, in the A~225 Po-Fr region.

The experiment was performed at GSI in spring 2021. This talk was focused on:

- Aims of the experiment
- Experimental techniques
- Production of the ions of interest
- The GSI facility: FRS and the DESPEC decay station
- Ion- β - γ - γ correlation method
- Initial stages of analysis

Thank you for your attention!

And thanks to the COLLABORATORS!

M. Polettini(1)(2)(*), J. Pellumaj(3)(4), G. Benzoni(2), J.J. Valiente-Dobon(3), A. Bracco(1)(2), G. Aggez(5), H.M. Albers(6), S. Alhomaidhi(6)(7), T. Arici (5), M. Armstrong(6)(8), A. Banerjee(6), P. Boutachkov(6), T. Davinson(9), T. Dickel(6), J. Gerl(6), M. Górska(6), E. Haettner(6), O. Hall(9), H. Heggen(6), N. Hubbard(6)(7), P. R. John(7), I. Kojouharov(6), G.Kosir(14), N. Kurz(6), M. Mikolajczuk(10), A.K. Mistry(6)(7), B. S. Nara Singh(11), S. Pietri(6), Zs. Podolyak(12), P.H. Regan(12)(13), M. Rudigier(7), E. Sahin(6)(7), H. Schaffner(6), C. Scheidenberger(6), J. Vesic(14), H. Weick(6), H.J. Wollersheim(6), A. Yaneva(6)(8), G. Zhang(15)(16) for the S460 and the HISPEC-DESPEC collaboration

(1)Dipartimento di Fisica, Università degli Studi di Milano, Italy,

(2)INFN, Sezione di Milano, Italy,

(3)INFN, Laboratori Nazionali di Legnaro, Italy,

(4)Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy,

(5)Istanbul University, Graduate School of Sciences, Department of Physics, Beyazit, 34134, Istanbul, Turkey,

(6)GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany,

(7)Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany,

(8)Institut für Kernphysik der Universität zu Köln, Zülpicher Strasse 77, D-50937 Koln, Ger-many,

(9)University of Edinburgh, School of Physics and Astronomy, Edinburgh EH9 3FD, UK,

(10) University of Warsaw, Warsaw, Poland,

(11)SUPA, School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, UK,

(12) Department of Physics, University of Surrey, Guildford, GU2 7XH, UK,

(13) National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK,

(14) Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia,

(15) Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy,

(16)INFN Sezione di Padova, Padova, Italy