Nuclear Structure Theory Modelling for
 Large Scale Comparisons with Experiment

Jerzy DUDEK
UdS/IN ${ }_{2} \mathrm{P}_{3} / \mathrm{CNRS}$, France

NUSTAR Week 2021

COLLABORATORS

Irene Dedes

IFJ, Polish Academy of Sciences, Cracow, Poland
Andrzej Baran, Andrzej Góźdź and Jie Yang
UMCS, Lublin, Poland
Dominique Curien and David Rouvel
IPHC and University of Strasbourg, France
Rami Gaamouci
University of Algiers, Algiers, Algeria
Aleksandra Pẹdrak
National Centre for Nuclear Research, Warsaw, Poland
Hua-Lei Wang
Zhengzhou University, Zhengzhou, China

Recent common publications \rightarrow

PHYSICAL REVIEW LETTERS 127, 112501 (2021)

Mass Measurements of Neutron-Deficient Yb Isotopes and Nuclear Structure at the Extreme Proton-Rich Side of the $N=\mathbf{8 2}$ Shell

Sönke Becke, ${ }^{1,2,{ }^{*}}$ Brian Kootte, ${ }^{3,4}$ Irene Dedes, ${ }^{5,6}$ Timo Dickel, ${ }^{1,2}$ A. A. Kwiatkowski, ${ }^{3,7}$
Eleni Marina Lykiardopoulou, ${ }^{8,3}$ Wolfgang R. Plaß, ${ }^{1,2}$ Moritz P. Reiter, ${ }^{1,3,9}$ Corina Andreoiu, ${ }^{10}$ Julian Bergmann, ${ }^{1}$ Thomas Brunner, ${ }^{11}$ Dominique Curien, ${ }^{12}$ Jens Dilling, ${ }^{3,8}$ Jerzy Dudek, ${ }^{12,6}$ Eleanor Dunling, ${ }^{3,13}$ Jake Flowerdew, ${ }^{14}$ Abdelghafar Gaamouci, ${ }^{15}$ Leigh Graham, ${ }^{3}$ Gerald Gwinner, ${ }^{4}$ Andrew Jacobs, ${ }^{8,3}$ Renee Klawitter, ${ }^{3}$ Yang Lan, ${ }^{8}$ Erich Leistenschneider, ${ }^{8,3}$ Nikolay Minkov, ${ }^{16}$ Victor Monier, ${ }^{3}$ Ish Mukul, ${ }^{3}$ Stefan F. Paul, ${ }^{3}$ Christoph Scheidenberger, ${ }^{1,2,17}$ Robert I. Thompson, ${ }^{14}$ James L. Tracy, Jr., ${ }^{3}$ Michael Vansteenkiste, ${ }^{3}$ Hua-Lei Wang, ${ }^{18}$ Michael E. Wieser, ${ }^{14}$
Christian Will, ${ }^{1}$ and Jie Yang ${ }^{6,18}$

Recent common publications \rightarrow

Physics Letters B 802 (2020) 135200

Contents lists available at ScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb

Isomer studies in the vicinity of the doubly-magic nucleus ${ }^{100} \mathrm{Sn}$: Observation of a new low-lying isomeric state in ${ }^{97} \mathrm{Ag}$
Christine Hornung a,*, Daler Amanbayev ${ }^{\text {a }}$, Irene Dedes ${ }^{\text {b }}$, Gabriella Kripko-Koncz ${ }^{\text {a }}$, Ivan Miskun ${ }^{a}$, Noritaka Shimizu ${ }^{c}$, Samuel Ayet San Andrés ${ }^{\text {a,d }}$, Julian Bergmann ${ }^{\text {a }}$, Timo Dickel ${ }^{\text {a,d }}$, Jerzy Dudek ${ }^{\text {e,b }}$, Jens Ebert ${ }^{\text {a }}$, Hans Geissel ${ }^{\text {a,d }}$, Magdalena Górska ${ }^{\text {d }}$, Hubert Grawe ${ }^{\mathrm{d}}$, Florian Greiner ${ }^{\mathrm{a}}$, Emma Haettner ${ }^{\mathrm{d}}$, Takaharu Otsuka ${ }^{\mathrm{f}}$, Wolfgang R. Plaß ${ }^{\text {a,d }}$, Sivaji Purushothaman ${ }^{\text {d }}$, Ann-Kathrin Rink ${ }^{\text {a }}$, Christoph Scheidenberger ${ }^{\text {a,d }}$, Helmut Weick ${ }^{\text {d }}$, Soumya Bagchi ${ }^{\text {a,d,g }}$, Andrey Blazhev ${ }^{\text {h }}$, Olga Charviakova ${ }^{i}$, Dominique Curien ${ }^{e}$, Andrew Finlay ${ }^{j}$, Satbir Kaur ${ }^{\text {g }}$, Wayne Lippert ${ }^{\text {a }}$, Jan-Hendrik Otto ${ }^{a}$, Zygmunt Patyk ${ }^{\text {i }}$, Stephane Pietri ${ }^{\text {d }}$, Yoshiki K. Tanaka ${ }^{\text {d }}$, Yusuke Tsunoda ${ }^{\text {c }}$, John S. Winfield ${ }^{\text {d }}$

Recent common experiment proposals / Lol's \rightarrow
... we can quote 5 recent initiatives in these categories

About This Presentation II

This presentation \rightarrow

We discuss a selection of Physics Themes which could provide platforms for Experiment \& Theory Collaborations

About "Large Scale Comparisons" \leftrightarrow Partial List of Subjects: Part 1

1. Isomers

K-isomers,
Yrast trap isomers and yrast lines, Shape isomers, In particular fission isomers, etc.;

1. Isomers

> K-isomers, Yrast trap isomers and yrast lines, Shape isomers, In particular fission isomers, etc.;

2. Nuclear Masses

New/Improved measurements of nuclear masses

1. Isomers

> K-isomers,
> Yrast trap isomers and yrast lines,
> Shape isomers,
> In particular fission isomers, etc.;
2. Nuclear Masses

New/Improved measurements of nuclear masses
3. Rotational band properties

Bands - in particular - bands based on isomers, Quasi-particle band structures, Band crossings and interactions, Shape evolution with spin, So-called pairing phase transitions, etc.;

4. Exotic symmetries and shapes

Tetrahedral and octahedral symmetries (freshly discovered) Super-deformation, Hyper-deformation, Toroidal shapes, Shapes leading to tripartition, etc.;

4. Exotic symmetries and shapes

Tetrahedral and octahedral symmetries (freshly discovered) Super-deformation, Hyper-deformation, Toroidal shapes, Shapes leading to tripartition, etc.;
5. Fission and exotic fission modes

Competing fission paths, Local-minimum to local-minimum transitions, etc.;
4. Exotic symmetries and shapes

Tetrahedral and octahedral symmetries (freshly discovered)
Super-deformation, Hyper-deformation,
Toroidal shapes,
Shapes leading to tripartition, etc.;
5. Fission and exotic fission modes

Competing fission paths,
Local-minimum to local-minimum transitions, etc.;
6. Specific nuclear excitations modes

Modes involving increasing temperatures, Modes involving increasing spins, Giant Dipole Resonances, Jacobi and Poincaré shape transitions, etc.;

EUR - -LABS
 tunaran meortoies

 EUROpean Laboratories for Accelerator Based Science

SHORT NAME: EURO-LABS

DEPOSITED PROJECT*)

MeanField4Exp: User-Friendly Interface to the Advanced Nuclear-Structure Theory Calculations

[Spokesperson: J. DUDEK, Université de Strasbourg, IPHC/IN $\mathbf{N}_{2} /$ CNRS, France]
Collaborators:
Adam MAJ, Piotr BEDNARCZYK, Irene DEDES, Bogdan FORNAL IFJ PAN Cracow, Poland

Paweł NAPIÓRKOWSKI, Krzysztof RUSEK
HIL Warsaw University Warsaw, Poland
${ }^{*)}$ Even if proponents hope for the best, the project may (or may not) be funded

EUR ${ }^{-}$-LABS

 Rop acterbrios BSED SCIERCES
 EUROpean Laboratories for Accelerator Based Science

SHORT NAME: EURO-LABS

- About MeanField4Exp Proposal
- Providing Research Infrastructure users a mean-field theory based universal-use software allowing a non-expert to produce state-of-the-art and standard today theory results comparable with experiment

EUR ${ }^{-}$-LABS

 EUROpean Laboratories for Accelerator Based Science

SHORT NAME: EURO-LABS

- About MeanField4Exp Proposal
- Providing Research Infrastructure users a mean-field theory based universal-use software allowing a non-expert to produce state-of-the-art and standard today theory results comparable with experiment
- Standard does not mean trivial: It could be very complex but acknowledged today by the community as powerful guidance theory \leftrightarrow experiment ('known to everyone')

EUR ${ }^{-1}$-LABS

 EUROpean Laboratories for Accelerator Based Science

SHORT NAME: EURO-LABS

- About MeanField4Exp Proposal
- Providing Research Infrastructure users a mean-field theory based universal-use software allowing a non-expert to produce state-of-the-art and standard today theory results comparable with experiment
- Standard does not mean trivial: It could be very complex but acknowledged today by the community as powerful guidance theory \leftrightarrow experiment ('known to everyone')
- Bypassing 'the standard'; Proponents offer a new dimension of high actuality today: Theory Results with Theoretical Uncertainties

EUR ${ }^{-1}$-LABS

 for nctrebrion Basel sciences

 EUROpean Laboratories for Accelerator Based Science

 EUROpean Laboratories for Accelerator Based Science}

SHORT NAME: EURO-LABS

- About MeanField4Exp Proposal

- Providing Research Infrastructure users a mean-field theory based universal-use software allowing a non-expert to produce state-of-the-art and standard today theory results comparable with experiment
- Standard does not mean trivial: It could be very complex but acknowledged today by the community as powerful guidance theory \leftrightarrow experiment ('known to everyone')
- Bypassing 'the standard'; Proponents offer a new dimension of high actuality today:

Theory Results with Theoretical Uncertainties

- Large spectrum of nuclear structure subfields covers many mechanisms of potential interest at GSI/FAIR, GANIL/SPIRAL2, LNL/SPES, ALTO, ISOLDE, JYFL, HIL Warsaw, CCB Cracow, and, and, and ...

EUR ${ }^{-1}$ LABS

 for nctrebrios assed sciences

 EUROpean Laboratories for Accelerator Based Science

 EUROpean Laboratories for Accelerator Based Science}

SHORT NAME: EURO-LABS

- About MeanField4Exp Proposal

- Providing Research Infrastructure users a mean-field theory based universal-use software allowing a non-expert to produce state-of-the-art and standard today theory results comparable with experiment
- Standard does not mean trivial: It could be very complex but acknowledged today by the community as powerful guidance theory \leftrightarrow experiment ('known to everyone')
- Bypassing 'the standard'; Proponents offer a new dimension of high actuality today:

Theory Results with Theoretical Uncertainties

- Large spectrum of nuclear structure subfields covers many mechanisms of potential interest at GSI/FAIR, GANIL/SPIRAL2, LNL/SPES, ALTO, ISOLDE, JYFL, HIL Warsaw, CCB Cracow, and, and, and ...
- The subjects covered in this European Project cover nearly the full list just shown
- Let us begin with a short true story ...
- Let us begin with a short true story ...
\rightarrow An experimentalist-friend called:
"Can we interpret our newest data with your theory"
- Let us begin with a short true story ...
\rightarrow An experimentalist-friend called:
"Can we interpret our newest data with your theory"
\rightarrow We said:

"Yes, of course!"

- Let us begin with a short true story ...
\rightarrow An experimentalist-friend called:
"Can we interpret our newest data with your theory"
\rightarrow We said:

"Yes, of course!"

\rightarrow He replied:
But does your theory have predictive power?

- Let us begin with a short true story ...
\rightarrow An experimentalist-friend called:
"Can we interpret our newest data with your theory"
\rightarrow We said:

"Yes, of course!"

\rightarrow He replied:
But does your theory have predictive power?
$\rightarrow \mathrm{He}$ added:
Did you read the special Editorial of Physical Review requesting analysis of uncertainties of theoretical calculations?

Editorial: Uncertainty Estimates, PHYSICAL REVIEW A 83, 040001 (2011)

- Let us begin with a short true story ...
\rightarrow An experimentalist-friend called:
"Can we interpret our newest data with your theory"
\rightarrow We said:

> "Yes, of course!"
\rightarrow He replied:
But does your theory have predictive power?
$\rightarrow \mathrm{He}$ added:
Did you read the special Editorial of Physical Review requesting analysis of uncertainties of theoretical calculations?

Editorial: Uncertainty Estimates, PHYSICAL REVIEW A 83, 040001 (2011)
\rightarrow We answered:
Elementary! We have been doing this type of estimates*) for quite some time by now !!!
*) Open Problems in Nuclear Theory, J Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

Editorial: Uncertainty Estimates

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.
It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements. For example, a graphical presentation of data is always accompanied by error bars for the data points. The determination of these error bars is often the most difficult part of the measurement. Without them, it is impossible to tell whether or not bumps and irregularities in the data are real physical effects, or artifacts of the measurement. Even papers reporting the observation of entirely new phenomena need to contain enough information to convince the reader that the effect being reported is real. The standards become much more rigorous for papers claiming high accuracy.
The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations. It is all too often the case that the numerical results are presented without uncertainty estimates. Authors sometimes say that it is difficult to arrive at error estimates. Should this be considered an adequate reason for omitting them? In order to answer this question, we need to consider the goals and objectives of the theoretical (or computational) work being done. Theoretical papers can be broadly classified as follows:

1. Development of new theoretical techniques or formalisms.
2. Development of approximation methods, where the comparison with experiment, or other theory, itself provides an assessment of the error in the method of calculation.
3. Explanation of previously unexplained phenomena, where a semiquantitative agreement with experiment is already significant.
4. Quantitative comparisons with experiment for the purpose of (a) verifying that all significant physical effects have been taken into account, and/or (b) interpolating or extrapolating known experimental data
5. Provision of benchmark results intended as reference data or standards of comparison with other less accurate methods.

It is primarily papers in the last two categories that require a careful assessment of the theoretical uncertainties. The uncertainties can anise from two sources: (a) the degree to which the numencal results accurately represent the predictions of an underlying theoretical formalism, for example, convergence with the size of a basis set, or the step size in a numerical integration, and (b) physical effects not included in the calculation from the beginning, such as electron correlation and relativistic corrections. It is of course never possible to state precisely what the error is without in fact doing a larger calculation and obtaining the higher accuracy. However, the same is true for the uncertainties in experimental data. The aim is to estimate the uncertainty, not to state the exact amount of the error or provide a rigorous bound.
There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation; for example, in scattering processes involving complex systems. The comparison with experiment itself provides a test of our theoretical understanding. However, there is a broad class of papers where estimates of theoretical uncertainties can and should be made. Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

These guidelines have been used on a case-by-case basis for the past two years. Authors have adapted well to this, resulting in papers of greater interest and significance for our readers.

The Editors

Published 29 April 2011
DOI: $10.1103 /$ PhysRevA. 83.040001
PACS number(s): $01.30 . \mathrm{Ww}$

PHYSICAL REVIEW A 83, 040001 (2011)

Editorial: Uncertainty Estimates

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements. For example, a graphical presentation of data is always accompanied by error bars for the data points. The determination of these error bars is often the most difficult part of the measurement. Without them, it is impossible to tell whether or not bumps and irregularities in the data are real physical effects, or artifacts of the measurement. Even papers reporting the observation of entirely new phenomena need to contain enough information to convince the reader that the effect being reported is real. The standards become much more rigorous for papers claiming high accuracy.

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations. It is all too often the case that the numerical results are presented without uncertainty estimates. Authors sometimes say that it is difficult to arrive at error estimates. Should this be considered an adequate reason for omitting them? In order to answer this question, we need to consider the goals and objectives of the theoretical (or computational) work being done. Theoretical papers can be broadly classified as follows:

1. Development of new theoretical techniques or formalisms.
2. Development of approximation methods, where the comparison with experiment, or other theory, itself provides an assessment of the error in the method of calculation.
3. Explanation of previously unexplained phenomena, where a semiquantitative agreement with experiment is already significant.
4. Proposals for new experimental arrangements or configurations, such as optical lattices.
5. Quantitative comparisons with experiment for the purpose of (a) verifying that all significant physical effects have been taken into account, and/or (b) interpolating or extrapolating known experimental data.
6. Provision of benchmark results intended as reference data or standards of comparison with other less accurate methods.

Part I

Nuclear Theories Linked with Experiments: Predictive-Power Perspective

Our research projects are formulated within the following Stochastic Interpretation of Predictive Power*)
${ }^{*}$) Introduced in "Open Problems in Nuclear Theory", J Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

Our research projects are formulated within the following Stochastic Interpretation of Predictive Power*)

- Given theory \mathcal{T}, of a quantum phenomenon \mathcal{P}, employing observables

$$
\hat{\mathcal{F}}_{1}, \hat{\mathcal{F}}_{2}, \ldots \hat{\mathcal{F}}_{p}
$$

${ }^{*}$) Introduced in "Open Problems in Nuclear Theory", J Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

Our research projects are formulated within the following

Stochastic Interpretation of Predictive Power*)

- Given theory \mathcal{T}, of a quantum phenomenon \mathcal{P}, employing observables

$$
\hat{\mathcal{F}}_{1}, \hat{\mathcal{F}}_{2}, \ldots \hat{\mathcal{F}}_{p}
$$

- Observables will be characterised not only by related eigenvalues i.e. $\left\{\boldsymbol{f}_{j}\right\}$

$$
\left[\hat{\mathcal{F}}_{1} \rightarrow\left\{f_{1}\right\}, \quad \hat{\mathcal{F}}_{2} \rightarrow\left\{f_{2}\right\}, \quad \ldots \hat{\mathcal{F}}_{p} \rightarrow\left\{f_{p}\right\}\right]
$$

${ }^{*}$) Introduced in "Open Problems in Nuclear Theory", J Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

Our research projects are formulated within the following

Stochastic Interpretation of Predictive Power*)

- Given theory \mathcal{T}, of a quantum phenomenon \mathcal{P}, employing observables

$$
\hat{\mathcal{F}}_{1}, \hat{\mathcal{F}}_{2}, \ldots \hat{\mathcal{F}}_{p}
$$

- Observables will be characterised not only by related eigenvalues i.e. $\left\{\boldsymbol{f}_{j}\right\}$

$$
\left[\hat{\mathcal{F}}_{1} \rightarrow\left\{f_{1}\right\}, \quad \hat{\mathcal{F}}_{2} \rightarrow\left\{f_{2}\right\}, \quad \ldots \hat{\mathcal{F}}_{p} \rightarrow\left\{f_{p}\right\}\right]
$$

but also by distributions of probability of their validity - or applicability

$$
\mathcal{P}_{1}=\mathcal{P}_{1}\left(f_{1}\right), \quad \mathcal{P}_{2}=\mathcal{P}_{2}\left(f_{2}\right), \ldots \mathcal{P}_{p}=\mathcal{P}_{1}\left(f_{p}\right)
$$

${ }^{*}$) Introduced in "Open Problems in Nuclear Theory", J Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

Our research projects are formulated within the following

Stochastic Interpretation of Predictive Power*)

- Given theory \mathcal{T}, of a quantum phenomenon \mathcal{P}, employing observables

$$
\hat{\mathcal{F}}_{1}, \hat{\mathcal{F}}_{2}, \ldots \hat{\mathcal{F}}_{p}
$$

- Observables will be characterised not only by related eigenvalues i.e. $\left\{f_{j}\right\}$

$$
\left[\hat{\mathcal{F}}_{1} \rightarrow\left\{f_{1}\right\}, \quad \hat{\mathcal{F}}_{2} \rightarrow\left\{f_{2}\right\}, \quad \ldots \hat{\mathcal{F}}_{p} \rightarrow\left\{f_{p}\right\}\right]
$$

but also by distributions of probability of their validity - or applicability

$$
\mathcal{P}_{1}=\mathcal{P}_{1}\left(f_{1}\right), \quad \mathcal{P}_{2}=\mathcal{P}_{2}\left(f_{2}\right), \ldots \mathcal{P}_{p}=\mathcal{P}_{1}\left(f_{p}\right)
$$

- These distributions are obtained using stochastic methods on the basis of uncertainties known-, or possible to estimate today
${ }^{*}$) Introduced in "Open Problems in Nuclear Theory", J Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

Theory-Errors Limit Theory's Predictive Power

- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information

Theory-Errors Limit Theory's Predictive Power

- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information
- Solution: In cases of doubt we 'parametrize our ignorance'
- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information
- Solution: In cases of doubt we 'parametrize our ignorance'
- In other words: We estimate which answer is more,- and which less-likely 'the right solution'. Expressed alternatively:
- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information
- Solution: In cases of doubt we 'parametrize our ignorance'
- In other words: We estimate which answer is more,- and which less-likely 'the right solution'. Expressed alternatively:

Find relative probability of what we think the right answer is!

- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information
- Solution: In cases of doubt we 'parametrize our ignorance'
- In other words: We estimate which answer is more,- and which less-likely 'the right solution'. Expressed alternatively:

Find relative probability of what we think the right answer is!
In Applied Mathematics:

1. Our ignorance is usually represented by a random variable X

- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information
- Solution: In cases of doubt we 'parametrize our ignorance'
- In other words: We estimate which answer is more,- and which less-likely 'the right solution'. Expressed alternatively:

Find relative probability of what we think the right answer is!
In Applied Mathematics:

1. Our ignorance is usually represented by a random variable X
2. Mathematically, variable X is represented by a probability distribution $P_{X}=P_{X}(x), x$ called 'realisation' of variable X

- There exist effective means of limiting the negative impact of the ignorance originating from incompleteness of information
- Solution: In cases of doubt we 'parametrize our ignorance'
- In other words: We estimate which answer is more,- and which less-likely 'the right solution'. Expressed alternatively:

Find relative probability of what we think the right answer is!
In Applied Mathematics:

1. Our ignorance is usually represented by a random variable X
2. Mathematically, variable X is represented by a probability distribution $P_{X}=P_{X}(x), x$ called 'realisation' of variable X

Conclusion: Not knowing 'the truth' we may introduce several competing hypotheses \& calculate their relative probabilities!

If the confidence intervals diverge we loose unique answers,

If the confidence intervals diverge we loose unique answers, but on the other hand we are confident of our errors

If the confidence intervals diverge we loose unique answers,

 but on the other hand we are confident of our errors```
 A similar problem has been encountered,
according to Umberto Eco, about 1327 ("Il nome della rosa")
```

If the confidence intervals diverge we loose unique answers, but on the other hand we are confident of our errors

```
 A similar problem has been encountered,
according to Umberto Eco, about 1327 ("Il nome della rosa")
```

"So you don't have unique answers to your questions?"

If the confidence intervals diverge we loose unique answers, but on the other hand we are confident of our errors

$$
\begin{aligned}
& \text { A similar problem has been encountered, } \\
& \text { according to Umberto Eco, about } 1327 \text { ("Il nome della rosa") }
\end{aligned}
$$

"So you don't have unique answers to your questions?"
"Adso, if I had, I would teach theology in Paris"

If the confidence intervals diverge we loose unique answers, but on the other hand we are confident of our errors

$$
\begin{aligned}
& \text { A similar problem has been encountered, } \\
& \text { according to Umberto Eco, about } 1327 \text { ("Il nome della rosa") }
\end{aligned}
$$

"So you don't have unique answers to your questions?"
"Adso, if I had, I would teach theology in Paris"
"Do they always have a right answer in Paris?"

If the confidence intervals diverge we loose unique answers, but on the other hand we are confident of our errors

$$
\begin{aligned}
& \text { A similar problem has been encountered, } \\
& \text { according to Umberto Eco, about } 1327 \text { ("Il nome della rosa") }
\end{aligned}
$$

"So you don't have unique answers to your questions?"
"Adso, if I had, I would teach theology in Paris"
"Do they always have a right answer in Paris?"
"Never", said William,

If the confidence intervals diverge we loose unique answers, but on the other hand we are confident of our errors

$$
\begin{aligned}
& \text { A similar problem has been encountered, } \\
& \text { according to Umberto Eco, about } 1327 \text { ("Il nome della rosa") }
\end{aligned}
$$

"So you don't have unique answers to your questions?"
"Adso, if I had, I would teach theology in Paris"
"Do they always have a right answer in Paris?"
"Never", said William,
"but there they are quite confident of their errors".

## Part II

## About Fundamental Method of Parameter Optimisation of Applied Mathematics:

## Inverse Problem Theory

## Direct and Inverse Problems in Quantum Theories

## Direct and Inverse Problems in Quantum Theories

- Consider an arbitrary, e.g., many-body theory with its Hamiltonian:

$$
\hat{H}=\hat{\boldsymbol{T}}+\hat{V}_{\text {int }}(\ldots\{p\}) ; \quad\{p\} \rightarrow \text { optimal parameters }
$$

## Direct and Inverse Problems in Quantum Theories

- Consider an arbitrary, e.g., many-body theory with its Hamiltonian:

$$
\hat{H}=\hat{\boldsymbol{T}}+\hat{V}_{\text {int }}(\ldots\{p\}) ; \quad\{p\} \rightarrow \text { optimal parameters }
$$

- If we know the parameters, we are able to solve the Direct Problem:

$$
\hat{H} \varphi_{j}(\ldots,\{p\})=e_{j}^{t h}(\ldots,\{p\}) \varphi_{j}(\ldots,\{p\})
$$

## Direct and Inverse Problems in Quantum Theories

- Consider an arbitrary, e.g., many-body theory with its Hamiltonian:

$$
\hat{H}=\hat{\boldsymbol{T}}+\hat{V}_{\text {int }}(\ldots\{p\}) ; \quad\{p\} \rightarrow \text { optimal parameters }
$$

- If we know the parameters, we are able to solve the Direct Problem:

$$
\hat{H} \varphi_{j}(\ldots,\{p\})=e_{j}^{t h}(\ldots,\{p\}) \varphi_{j}(\ldots,\{p\})
$$

- However, before any comparison theory-experiment, and even more generally: Before any calculation we must solve the Inverse Problem:

Determine Hamiltonian parameters using experimental data

## Inverse Problem $\leftrightarrow$ Applied Mathematics

- Given parameters $\{p\} \rightarrow$ The theoretical modeling produces data:

$$
\hat{H}(p) \rightarrow\left\{E_{p}, \psi(p)\right\} \leftrightarrow \hat{\mathcal{O}}_{H}(p)=d^{\text {th }} \leftarrow \text { Direct Problem }
$$

## Inverse Problem $\leftrightarrow$ Applied Mathematics

- Given parameters $\{p\} \rightarrow$ The theoretical modeling produces data:

$$
\hat{H}(p) \rightarrow\left\{E_{p}, \psi(p)\right\} \leftrightarrow \hat{\mathcal{O}}_{H}(p)=d^{\text {th }} \leftarrow \text { Direct Problem }
$$

- To find the optimal parameters we must invert the above relation:

$$
p^{o p t}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{e x p}\right) \leftarrow \text { Inverse Problem }
$$

## Inverse Problem $\leftrightarrow$ Applied Mathematics

- Given parameters $\{p\} \rightarrow$ The theoretical modeling produces data:

$$
\hat{H}(p) \rightarrow\left\{E_{p}, \psi(p)\right\} \leftrightarrow \hat{\mathcal{O}}_{H}(p)=d^{\text {th }} \leftarrow \text { Direct Problem }
$$

- To find the optimal parameters we must invert the above relation:

$$
p^{o p t}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{e x p}\right) \leftarrow \text { Inverse Problem }
$$

- In many-body theories the existence of operator $\hat{\mathcal{O}}_{\mathbf{H}}^{-\mathbf{1}}$ is doubtful, in fact no mathematical methods of such a construction are known


## Inverse Problem $\leftrightarrow$ Applied Mathematics

- Given parameters $\{p\} \rightarrow$ The theoretical modeling produces data:

$$
\hat{H}(p) \rightarrow\left\{E_{p}, \psi(p)\right\} \leftrightarrow \hat{\mathcal{O}}_{H}(p)=d^{\text {th }} \leftarrow \text { Direct Problem }
$$

- To find the optimal parameters we must invert the above relation:

$$
p^{o p t}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{e x p}\right) \leftarrow \text { Inverse Problem }
$$

- In many-body theories the existence of operator $\hat{\mathcal{O}}_{\mathbf{H}}^{-1}$ is doubtful, in fact no mathematical methods of such a construction are known
- If $\hat{\mathcal{O}}_{H}$ has no inverse we say that inverse problem is ill-posed


## Inverse Problem $\leftrightarrow$ Applied Mathematics

- Given parameters $\{p\} \rightarrow$ The theoretical modeling produces data:

$$
\hat{H}(p) \rightarrow\left\{E_{p}, \psi(p)\right\} \leftrightarrow \hat{\mathcal{O}}_{H}(p)=d^{\text {th }} \leftarrow \text { Direct Problem }
$$

- To find the optimal parameters we must invert the above relation:

$$
p^{o p t}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{e x p}\right) \leftarrow \text { Inverse Problem }
$$

- In many-body theories the existence of operator $\hat{\mathcal{O}}_{\mathbf{H}}^{-1}$ is doubtful, in fact no mathematical methods of such a construction are known
- If $\hat{\mathcal{O}}_{H}$ has no inverse we say that inverse problem is ill-posed
- Since $\mathcal{O}_{H}^{-1}$ remains unknown, instead of solving Inverse Problem $\rightarrow$ " In physics - one minimises $\chi^{2 "}$
- If the Inverse Problem is ill-posed, equation $p^{\text {opt }}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{\text {exp }}\right)$ cannot be solved, there is no relation between experimental data and the Hamiltonian parameters in this model - no way to find $p^{\text {opt }}$
- If the Inverse Problem is ill-posed, equation $p^{\text {opt }}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{\text {exp }}\right)$ cannot be solved, there is no relation between experimental data and the Hamiltonian parameters in this model - no way to find $p^{\text {opt }}$
- In other words: Correlation between parameters and data is lost!

No reason to employ $\chi^{2}$ because no solution exists

- If the Inverse Problem is ill-posed, equation $p^{\text {opt }}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{\text {exp }}\right)$ cannot be solved, there is no relation between experimental data and the Hamiltonian parameters in this model - no way to find $p^{\text {opt }}$
- In other words: Correlation between parameters and data is lost! No reason to employ $\chi^{2}$ because no solution exists
- "Fortunately", since we have no way of constructing $\hat{\mathcal{O}}_{H}^{-1}$, we do not know whether our projects are ill-posed or not, we hope for the best and engage $\chi^{2}$-minimisation - but there will be a price to pay!
- If the Inverse Problem is ill-posed, equation $p^{\text {opt }}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{\text {exp }}\right)$ cannot be solved, there is no relation between experimental data and the Hamiltonian parameters in this model - no way to find $p^{\text {opt }}$
- In other words: Correlation between parameters and data is lost! No reason to employ $\chi^{2}$ because no solution exists
- "Fortunately", since we have no way of constructing $\hat{\mathcal{O}}_{H}^{-1}$, we do not know whether our projects are ill-posed or not, we hope for the best and engage $\chi^{2}$-minimisation - but there will be a price to pay!
- Finding the minimum will be just the beginning, not the end


## About the So-Called Chi-By-the-Eye "Method"

- After laborious theoretical constructions, we get terribly exhausted and forget that: Professional parameter determination is a noble, mathematically sophisticated procedure based on statistical theories often more involved than the physical problems under our studies!


## About the So-Called Chi-By-the-Eye "Method"

- After laborious theoretical constructions, we get terribly exhausted and forget that: Professional parameter determination is a noble, mathematically sophisticated procedure based on statistical theories often more involved than the physical problems under our studies!



## About the So-Called Chi-By-the-Eye "Method"

- In their introduction to the book chapter 'Modelling of Data', the authors of 'Numerical Recipes" (p. 651), observe with sarcasm:
"Unfortunately, many practitioners of parameter estimation never proceed beyond determining the numerical values of the parameter fit. They deem a fit acceptable if a graph of data and model ' looks good'. This approach is known as chi-by-the-eye. Luckily, its practitioners get what they deserve" [what is meant is: "they" obtain a 'meaningless result']


## About the So-Called Chi-By-the-Eye "Method"

- In their introduction to the book chapter 'Modelling of Data', the authors of 'Numerical Recipes" (p. 651), observe with sarcasm:
"Unfortunately, many practitioners of parameter estimation never proceed beyond determining the numerical values of the parameter fit. They deem a fit acceptable if a graph of data and model ' looks good'. This approach is known as chi-by-the-eye. Luckily, its practitioners get what they deserve" [what is meant is: "they" obtain a 'meaningless result']
- Meaningless result $\leftarrow$ less politely $\rightarrow$ Equivalent to random numbers


## Part III

## How to profit from $\chi^{2}$-techniques <br> ( Or: How to " $\chi^{2}$ professionally")

- We know that in principle we should solve this $p^{o p t}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{\text {exp }}\right)$
- On the other hand, we are forced to do this

$$
\min _{p} \chi^{2}\left(p^{o p t}\right)=?
$$

- One may show an existence of an algebraic linearised representation

$$
\frac{\partial x^{2}}{\partial p_{i}}=0 \rightarrow\left(J^{\top} J\right) \cdot p=J^{T} d^{\exp } \leftrightarrow J^{T} J \stackrel{d f}{=} \mathcal{A}
$$

- We thus obtain an algebraic analogue of $p^{o p t}=\hat{\mathcal{O}}_{H}^{-1}\left(d^{\text {exp }}\right)$

$$
\underbrace{\mathcal{A} \cdot \mathcal{P}=\mathcal{D}^{\exp }}_{\text {Direct Problem }} \rightarrow \underbrace{\mathcal{P}=\mathcal{A}^{-1} \cdot \mathcal{D}^{\exp }}_{\text {Inverse Problem }} \leftrightarrow \quad \mathcal{D}^{\exp } \equiv J^{\top} d^{\exp }
$$

## Stability of Solutions of " $\chi^{2}$ Inverse Problem"

- We consider the linear equations: $\mathcal{P}=\mathcal{A}^{-1} \cdot \mathcal{D} \leftrightarrow \mathcal{P}=\mathcal{C} \cdot \mathcal{D}$

$$
\text { Parameters } \rightarrow\left[\begin{array}{c}
\mathcal{P}_{1} \\
\mathcal{P}_{2} \\
\cdots \\
\mathcal{P}_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
\mathcal{C}_{11} & \mathcal{C}_{12} & \cdots & \mathcal{C}_{1 d} \\
\mathcal{C}_{21} & \mathcal{C}_{22} & \cdots & \mathcal{C}_{2 d} \\
\cdots & \cdots & \cdots & \cdots \\
\mathcal{C}_{m 1} & \mathcal{C}_{m 2} & \cdots & \mathcal{C}_{m d}
\end{array}\right]}_{\mathrm{m} \times \mathrm{d} \text { rectangular matrix }}\left[\begin{array}{c}
\mathcal{D}_{1} \\
\mathcal{D}_{2} \\
\cdots \\
\mathcal{D}_{d}
\end{array}\right] \leftarrow \text { Data }
$$

## Stability of Solutions of " $\chi^{2}$ Inverse Problem"

- We consider the linear equations: $\mathcal{P}=\mathcal{A}^{-1} \cdot \mathcal{D} \leftrightarrow \mathcal{P}=\mathcal{C} \cdot \mathcal{D}$

$$
\text { Parameters } \rightarrow\left[\begin{array}{c}
\mathcal{P}_{1} \\
\mathcal{P}_{2} \\
\cdots \\
\mathcal{P}_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
\mathcal{C}_{11} & \mathcal{C}_{12} & \cdots & \mathcal{C}_{1 d} \\
\mathcal{C}_{21} & \mathcal{C}_{22} & \cdots & \mathcal{C}_{2 d} \\
\cdots & \cdots & \cdots & \cdots \\
\mathcal{C}_{m 1} & \mathcal{C}_{m 2} & \cdots & \mathcal{C}_{m d}
\end{array}\right]}_{m \times d \text { rectangular matrix }}\left[\begin{array}{c}
\mathcal{D}_{1} \\
\mathcal{D}_{2} \\
\cdots \\
\mathcal{D}_{d}
\end{array}\right] \leftarrow \text { Data }
$$

- $\left[\mathcal{C}_{i k}\right]$ depend on: 1) Hamiltonian, and 2) Selection of data points


## Stability of Solutions of " $\chi^{2}$ Inverse Problem"

- We consider the linear equations:

$$
\mathcal{P}=\mathcal{A}^{-1} \cdot \mathcal{D} \leftrightarrow \mathcal{P}=\mathcal{C} \cdot \mathcal{D}
$$

$$
\text { Parameters } \rightarrow\left[\begin{array}{c}
\mathcal{P}_{1} \\
\mathcal{P}_{2} \\
\cdots \\
\mathcal{P}_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
\mathcal{C}_{11} & \mathcal{C}_{12} & \cdots & \mathcal{C}_{1 d} \\
\mathcal{C}_{21} & \mathcal{C}_{22} & \cdots & \mathcal{C}_{2 d} \\
\cdots & \cdots & \cdots & \cdots \\
\mathcal{C}_{m 1} & \mathcal{C}_{m 2} & \cdots & \mathcal{C}_{m d}
\end{array}\right]}_{\mathrm{m} \times \mathrm{d} \text { rectangular matrix }}\left[\begin{array}{c}
\mathcal{D}_{1} \\
\mathcal{D}_{2} \\
\cdots \\
\mathcal{D}_{d}
\end{array}\right] \leftarrow \text { Data }
$$

- $\left[\mathcal{C}_{i k}\right]$ depend on: 1) Hamiltonian, and 2) Selection of data points
- If one of the parameters is a function of another, say, $p_{k}=f\left(p_{k^{\prime}}\right)$ then one may show, that two columns of $\mathcal{A}$ are linearly dependent


## Stability of Solutions of " $\chi^{2}$ Inverse Problem"

- We consider the linear equations:

$$
\mathcal{P}=\mathcal{A}^{-1} \cdot \mathcal{D} \leftrightarrow \mathcal{P}=\mathcal{C} \cdot \mathcal{D}
$$



- $\left[\mathcal{C}_{i k}\right]$ depend on: 1) Hamiltonian, and 2) Selection of data points
- If one of the parameters is a function of another, say, $p_{k}=f\left(p_{k^{\prime}}\right)$ then one may show, that two columns of $\mathcal{A}$ are linearly dependent
- If this happens $\rightarrow \mathcal{C}$-matrix becomes singular [III-Posed Problem]

If we wish using $\chi^{2}$ - parameter correlations must be removed

## Part IV

## Detection of Parametric Correlations and Their Removal ILLUSTRATIONS

## Parameter Correlations and Correlation Matrix [WS]

- Given random variables $X$ and $Y$. Correlation matrix in this case:

$$
\operatorname{corr}(X, Y)=\frac{\sum_{i}\left[\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right]}{\sqrt{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}}} ; \bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i}, \bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

## Parameter Correlations and Correlation Matrix [WS]

- Given random variables $X$ and $Y$. Correlation matrix in this case:

$$
\operatorname{corr}(X, Y)=\frac{\sum_{i}\left[\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right]}{\sqrt{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}}} ; \bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i}, \bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

- Generally: $\{X, Y\} \rightarrow\left\{X_{k}\right\}=\left\{V_{0}^{c}, r_{0}^{c}, a_{0}^{c}, V_{0}^{s o}, r_{0}^{s o}\right\}$ we obtain:

Correlation matrix for the Woods-Saxon Hamiltonian parameters as obtained from the Monte-Carlo simulation

|  | $V_{0}^{c}$ | $r_{0}^{c}$ | $a_{0}^{c}$ | $V_{0}^{\text {so }}$ | $r_{0}^{\text {so }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{0}^{c}$ | 1.000 | 0.994 | -0.028 | 0.000 | 0.265 |
| $r_{0}^{c}$ | 0.994 | 1.000 | 0.016 | 0.005 | 0.270 |
| $a_{0}^{c}$ | 0.028 | 0.016 | 1.000 | 0.259 | 0.288 |
| $V_{0}^{\text {so }}$ | 0.000 | 0.005 | 0.259 | 1.000 | 0.506 |
| $r_{0}^{\text {so }}$ | 0.265 | 0.270 | 0.288 | 0.506 | 1.000 |

The non-diagonal matrix elements close to 1 signify strong matrix correlations

## Verbal Description of Monte-Carlo Simulations

One can demonstrate that parametric correlations of this kind can conveniently be studied using Monte Carlo methods

- Given space of data $\left\{d_{1}, d_{2}, \ldots d_{\mathrm{n}}\right\}$ with uncertainty $\sigma$
- With random-number generator we define Gaussian 'noise' distribution around each $\boldsymbol{d}_{\boldsymbol{i}}$
- We fit the parameter sets great number of times, $\mathcal{N}$
- From m-tuplets of so obtained parameters, $\left\{p_{1}, p_{2}, \ldots p_{m}\right\}$, we construct the tables and projection plots like the ones which follow



Monte-Carlo fitting results for ${ }^{208} \mathrm{~Pb}$ with the Woods-Saxon potential Left: ( $a_{0}^{c}$ vs. $V_{0}^{c}$ )-plane and Right: $\left(r_{0}^{c}\right.$ vs. $\left.V_{0}^{c}\right)$-plane



Monte-Carlo fitting results for ${ }^{208} \mathrm{~Pb}$ with the Woods-Saxon potential Left: ( $a_{0}^{c}$ vs. $V_{0}^{c}$ )-plane and Right: $\left(r_{0}^{c}\right.$ vs. $\left.V_{0}^{c}\right)$-plane

Correlation matrix for the Woods-Saxon Hamiltonian parameters

|  | $V_{0}^{c}$ | $r_{0}^{c}$ | $a_{0}^{c}$ | $V_{0}^{s o}$ | $r_{0}^{\text {so }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{0}^{c}$ | 1.000 | 0.994 | -0.028 | 0.000 | 0.265 |
| $r_{0}^{c}$ | 0.994 | 1.000 | 0.016 | 0.005 | 0.270 |
| $a_{0}^{c}$ | 0.028 | 0.016 | 1.000 | 0.259 | 0.288 |
| $V_{0}^{\text {so }}$ | 0.000 | 0.005 | 0.259 | 1.000 | 0.506 |
| $r_{0}^{s o}$ | 0.265 | 0.270 | 0.288 | 0.506 | 1.000 |

## Parametric Correlations for Skyrme Hamiltonian

To follow the illustrations it will be sufficient to know that our Skyrme Hamiltonian depends 6 adjustable constants:

$$
C_{0}^{\rho}, C_{1}^{\rho}, C_{o}^{\rho \alpha}, C_{0}^{\tau}, C_{1}^{\tau}, C_{0}^{\nabla J}
$$

## Parameter-Correlations in Skyrme-HF



Illustration suggesting that majority of these parameters are strongly correlated excluding the prediction capacities of the model [B. Szpak, PhD thesis]

## Part V

## Uncertainty Probability Densities ILLUSTRATIONS

## Controlling Model Uncertainties

- Observe than in the presented example uncertainties increase with angular momentum


## Controlling Model Uncertainties

- Observe than in the presented example uncertainties increase with angular momentum


Single-neutron uncertainty probability distributions for ${ }^{208} \mathrm{~Pb}$ with our 'universal' Woods-Saxon Hamiltonian

- Parametric correlations present


Probability of Uncertainty. Here: Central potential depth, $V_{0}^{c}$, for Woods-Saxon Universal

- Parametric correlations removed


Probability of Uncertainty. Here: Central potential depth, $V_{0}^{c}$, for Woods-Saxon Universal

- Parametric correlations present


Probability of Uncertainty. Here: Central potential depth, $\lambda_{0}^{s o}$, for Woods-Saxon Universal

## Profiting from Parameter-Correlation Removal - Part IV

- Parametric correlations removed


Probability of Uncertainty. Here: Central potential depth, $\lambda_{0}^{\text {so }}$, for Woods-Saxon Universal

## Part V

## Extraordinary Shell Effects*) in Light Nuclei

*) Exotic toroidal and super-deformed configurations in light atomic nuclei: Predictions using a mean-field Hamiltonian without parametric correlations;

PHYSICAL REVIEW C 103, 054311 (2021)

## Extraordinary Shell Effect in Light Nuclei

- We have re-adjusted the new set of the Universal WS parameters
- We have followed the rules of the parametric correlation removal
- We have re-adjusted the new set of the Universal WS parameters
- We have followed the rules of the parametric correlation removal
- We have calculated the equilibrium deformations, even-even nuclei
- We have compared them with existing experimental information
- We have re-adjusted the new set of the Universal WS parameters
- We have followed the rules of the parametric correlation removal
- We have calculated the equilibrium deformations, even-even nuclei
- We have compared them with existing experimental information
- Despite the fact that the parameters were fitted to spherical nuclei and test were focussed on the deformed ones no disagreement found
- We interpret this as the first confirmations about predictive power
- We have re-adjusted the new set of the Universal WS parameters
- We have followed the rules of the parametric correlation removal
- We have calculated the equilibrium deformations, even-even nuclei
- We have compared them with existing experimental information
- Despite the fact that the parameters were fitted to spherical nuclei and test were focussed on the deformed ones no disagreement found
- We interpret this as the first confirmations about predictive power
- Since parametric correlation are removed we stabilise predictions for exotic nuclei $\rightarrow$ we believe that other predictions are trustworthy


## Extraordinarily Strong Shell Effect in Light Nuclei



- Note that the shell-gaps for strongly oblate nuclei are significantly stronger than those for the spherical ones - contrasting with beliefs


# Prediction of Exotic Shapes and Structures in Light Nuclei 

## Super-Hexadecapole Shapes Never Seen




- Hexadecapole deformations $\alpha_{40}$ are stronger than large quadrupole $\alpha_{20}$ ones
- to our knowledge the mechanism never seen in the literature


## Super-Hexadecapole Shapes Never Seen




- Hexadecapole deformations $\alpha_{40}$ are stronger than large quadrupole $\alpha_{20}$ ones - to our knowledge the mechanism never seen in the literature

- The corresponding shapes: SUPER-OBLATE and TOROIDAL

- Focus on very elongated shapes with $\alpha_{20}>0$
$\rightarrow$ to our knowledge the effect never seen in the literature

- Focus on very elongated shapes with $\alpha_{20}>0$
$\rightarrow$ to our knowledge the effect never seen in the literature

- Exotic SUPER-DEFORMED and HYPER-DEFORMED shapes


## Part VI

## From Unprecedented Extreme Shapes To Unprecedented Exotic Shapes*)

${ }^{*}$ ) Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus
PHYSICAL REVIEW C 97, 021302(R) (2018)

## About Newly Discovered

## Tetrahedral and Octahedral Symmetries



$\alpha_{32} \equiv t_{3}=0.2$


$$
\alpha_{32} \equiv t_{3}=0.3
$$

Examples: Nuclear TETRAHEDRAL symmetry shapes

## About Newly Discovered

## Tetrahedral and Octahedral Symmetries


$o_{4}=0.1$

$o_{4}=0.2$

$o_{4}=0.3$

Examples: Nuclear OCTAHEDRAL symmetry shapes

## Nuclear Tetrahedral Shapes - Proton Spectra

Double group $T_{d}^{D}$ has two 2-dimensional - and one 4-dimensional irreducible representations: Three distinct families of nucleon levels


Full lines $\leftrightarrow$ 4-dimensional irreducible representations - marked with double Nilsson labels. Observe huge gaps at $N=64,70,90-94,100$.

## Nuclear Tetrahedral Shapes - Neutron Spectra

Double group $T_{d}^{D}$ has two 2-dimensional - and one 4-dimensional irreducible representations: Three distinct families of nucleon levels


Full lines $\leftrightarrow$ 4-dimensional irreducible representations - marked with double Nilsson labels. Observe huge gaps at $N=112,136$.


It is essential to recall that in the exact symmetry limit tetrahedral nuclei $\underline{\underline{\text { emit neither E2 nor E1 transitions }} \rightarrow \text { ISOMERS }}$
$\mathrm{E}(\mathrm{fyu})+$ Shell[e]+Correlation[PNP]


- Symmetric minima at $\alpha_{20}=0$ represent tetrahedral symmetry

- Tetrahedral minima at $\alpha_{32}= \pm 0.13$ are accompanied by non-vanishing octahedral deformation

$$
o_{1} \approx-0.06
$$

In what follows we take into account both tetrahedral and octahedral shape components simultaneously

In what follows we take into account both tetrahedral and octahedral shape components simultaneously

This decision is encouraged by the fact that the tetrahedral symmetry point group is a sub-group of the octahedral symmetry one

## Quantum Rotors: Tetrahedral vs. Octahedral

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi}=0^{+}$belongs to $A_{1}$ representation given by:

$$
\underbrace{\mathrm{A}_{1}: 0^{+}, 3^{-}, 4^{+}, \underbrace{\left(6^{+}, 6^{-}\right)}_{\text {doublet }}, 7^{-}, 8^{+}, \underbrace{\left(9^{+}, 9^{-}\right)}_{\text {doublet }}, \underbrace{\left(10^{+}, 10^{-}\right)}_{\text {doublet }}, 11^{-}, \underbrace{2 \times 12^{+}, 12^{-}}_{\text {triplet }}, \cdots}
$$

Forming a common parabola

- There are no states with spins $I=1,2$ and 5 . We have parity doublets: $I=6,9,10 \ldots$, at energies: $E_{6^{-}}=E_{6^{+}}, E_{9^{-}}=E_{9^{+}}$, etc.


## Quantum Rotors: Tetrahedral vs. Octahedral

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi}=0^{+}$belongs to $A_{1}$ representation given by:


Forming a common parabola

- There are no states with spins $I=1,2$ and 5 . We have parity doublets: $I=6,9,10 \ldots$, at energies: $E_{6^{-}}=E_{6^{+}}, E_{9^{-}}=E_{9^{+}}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$
\begin{aligned}
& \underbrace{A_{1 g}: 0^{+}, 4^{+}, 6^{+}, 8^{+}, 9^{+}, 10^{+}, \ldots, I^{\pi}=I^{+}}_{\text {Forming a common parabola }} \\
& \underbrace{A_{2 u}: 3^{-}, 6^{-}, 7^{-}, 9^{-}, 10^{-}, 11^{-}, \ldots, I^{\pi}=I^{-}}_{\text {Forming another (common) parabola }}
\end{aligned}
$$

# As a result of the "group / sub-group relation" 

 we should expect 2 parabolic structures
## Attention: These Perfect Parabolas Represent Experimental Results

- These two sequences represent the coexistence between tetrahedral and octahedral symmetries. Curves represent the parabolic fit and are not meant to guide the eye. This is the first evidence based on the experimental data


FROM: Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus
J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)

- After publication of the first discovery in subatomic physics:

> Spectroscopic Criteria for Identification of Nuclear Tetrahedral and Octahedral Symmetries: Illustration On a Rare Earth Nucleus PHYSICAL REVIEW C 97, 021302(R) (2018)
J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee

The journal Frontiers in Physics invites a special edition with the working title: "Tetrahedral ad Octahedral Symmetries: Crypto-Symmetries in Nuclear Physics" [ Guest Editor J. D.]

- We invite texts addressing GENERALLY physics of exotic symmetries $\neq$ quadrupole


## Part VII

## Microscopic View of Collective Nuclear Rotation

## Possibly High Precision Level In the Description I

- Some authors chose comparing experimental and theoretical rotational bands in the form of energy to energy comparisons


## Possibly High Precision Level In the Description I

- Some authors chose comparing experimental and theoretical rotational bands in the form of energy to energy comparisons
- Such "ladder plots" hide theory inaccuracies (not used here)
- Some authors chose comparing experimental and theoretical rotational bands in the form of energy to energy comparisons
- Such "ladder plots" hide theory inaccuracies (not used here)
- A higher precision is offered by employing the first derivatives

$$
I_{y}(I, K) \equiv \sqrt{I(I+1)-K^{2}} \leftrightarrow \quad \omega_{y}(I) \rightarrow \frac{d E_{I}}{d I_{y}} \approx \frac{E_{I+1}-E_{I-1}}{I_{y}(I+1)-I_{y}(I-1)}
$$

- Some authors chose comparing experimental and theoretical rotational bands in the form of energy to energy comparisons
- Such "ladder plots" hide theory inaccuracies (not used here)
- A higher precision is offered by employing the first derivatives

$$
I_{y}(I, K) \equiv \sqrt{I(I+1)-K^{2}} \leftrightarrow \quad \omega_{y}(I) \rightarrow \frac{d E_{I}}{d I_{y}} \approx \frac{E_{I+1}-E_{I-1}}{I_{y}(I+1)-I_{y}(I-1)}
$$

- The notion of frequency $\omega_{y}(I)$ leads to kinematical moments

$$
\mathcal{J}_{y}^{(1)}(I) \equiv \frac{I_{y}(I)}{\omega_{y}(I)}
$$

## Possibly High Precision Level In the Description I

- We apply the Hartree-Fock-Bogolyubov self-consistent Cranking method and the Woods-Saxon 'Universal' mean field approximation

- Observe reproduction of a double back-bending (no parameter fit)


## Possibly Highest Precision Level In the Description II

- Higher precision of comparison is offered by $2^{\text {nd }}$ derivatives

$$
J_{y}^{(2)} \equiv\left[\frac{d^{2} E_{l}}{d l_{y}^{2}}\right]^{-1}=\left[\frac{d \omega_{y}}{d l_{y}}\right]^{-1}=\frac{d l_{y}}{d \omega_{y}}
$$

- Simplifying notation we find dynamical moments as follows

$$
J_{y}^{(2)}=J_{y}^{(1)}+\omega_{y} \frac{d J_{y}^{(1)}}{d \omega_{y}} \leftrightarrow J^{(2)}=J^{(1)}+\omega \frac{d J^{(1)}}{d \omega}
$$

## Possibly Highest Precision Level In the Description II

- We apply the Hartree-Fock-Bogolyubov self-consistent Cranking method and the Woods-Saxon 'Universal' mean field approximation
- Dynamical $\mathcal{J}^{(2)}$ moments (HFBC) compared to experiment; observe manifestation of the pairing phase transition and the related $\mathcal{J}^{(2)}$-peak
- Neutron pairing gap- $\Delta_{n}$ calculated self-consistently. Here $\omega_{\text {crit }}$ denotes cranking frequency for vanishing gap
- Neutron single quasiparticle levels

- Observe reproduction of the $\mathcal{J}^{(2)}$ peak-position (no parameter fit)


## Why Important for Experiment -Theory Projects?

- It is well known that back-bending (up-bending) is a result of the presence of high-j orbitals close to the Fermi level \& Coriolis effect


## Why Important for Experiment -Theory Projects?

- It is well known that back-bending (up-bending) is a result of the presence of high-j orbitals close to the Fermi level \& Coriolis effect
- Thus results like the ones illustrated help identifying experimentally the presence of those special orbitals in the single-nucleonic spectra


## Why Important for Experiment-Theory Projects?

- It is well known that back-bending (up-bending) is a result of the presence of high- $j$ orbitals close to the Fermi level \& Coriolis effect
- Thus results like the ones illustrated help identifying experimentally the presence of those special orbitals in the single-nucleonic spectra
- Double back-bending, usually contributed by the neutrons and then protons allows searching for the simultaneous presence of some high- $j$ orbitals close to neutron and proton Fermi levels


## Why Important for Experiment -Theory Projects?

- It is well known that back-bending (up-bending) is a result of the presence of high-j orbitals close to the Fermi level \& Coriolis effect
- Thus results like the ones illustrated help identifying experimentally the presence of those special orbitals in the single-nucleonic spectra
- Double back-bending, usually contributed by the neutrons and then protons allows searching for the simultaneous presence of some high- $j$ orbitals close to neutron and proton Fermi levels
- Studying angular-momentum alignment (not illustrated here) helps identifying the $j$ and $m_{j}$ characteristics of the orbitals in question


## Why Important for Experiment -Theory Projects?

- It is well known that back-bending (up-bending) is a result of the presence of high-j orbitals close to the Fermi level \& Coriolis effect
- Thus results like the ones illustrated help identifying experimentally the presence of those special orbitals in the single-nucleonic spectra
- Double back-bending, usually contributed by the neutrons and then protons allows searching for the simultaneous presence of some high-j orbitals close to neutron and proton Fermi levels
- Studying angular-momentum alignment (not illustrated here) helps identifying the $j$ and $m_{j}$ characteristics of the orbitals in question
- By placing an odd-nucleon on the high-j orbital (neighbouring odd- $A$ nuclei) the 2qp alignments (back-bending) are blocked and by checking this - we double-check the exactitude of interpretations


## Part VIII

K-Isomers and Yrast-Traps:<br>Building Blocks of Understanding<br>the Underlying Nucleonic Structure

## Part VIII

# K-Isomers and Yrast-Traps: <br> Building Blocks of Understanding the Underlying Nucleonic Structure 

- What are they?


## Part VIII

## K-Isomers and Yrast-Traps: <br> Building Blocks of Understanding the Underlying Nucleonic Structure

- What are they?
- Their role as the stepping stones in $\gamma$-spectrometry, in mass-spectrometry, in nuclear structure recognition ...


## Condition Sine-Quoi-Non: Axial Symmetry

## Condition Sine-Quoi-Non: Axial Symmetry

- We use the mean-field approach; In the case of axial symmetry with respect to, say $\mathcal{O}_{z}$-axis, we have:

$$
\left[\hat{H}, \hat{\jmath}_{z}\right]=0
$$

Projections of Angular Momenta Are Conserved in the Presence of Axial Symmetry


Single-Nucleon
Alignment

## Condition Sine-Quoi-Non: Axial Symmetry

- We use the mean-field approach; In the case of axial symmetry with respect to, say $\mathcal{O}_{z}$-axis, we have:

$$
\left[\hat{H}, \hat{\jmath}_{z}\right]=0
$$

- Therefore we have 2 solutions

$$
\frac{\hat{H} \varphi_{\nu, m_{\nu}}=e_{\nu, m_{\nu}} \varphi_{\nu, m_{\nu}}}{\hat{\jmath}_{z} \varphi_{\nu, m_{\nu}}=m_{\nu} \varphi_{\nu, m_{\nu}}}
$$

Projections of Angular Momenta Are Conserved in the Presence of Axial Symmetry


## Condition Sine-Quoi-Non: Axial Symmetry

- We use the mean-field approach; In the case of axial symmetry with respect to, say $\mathcal{O}_{z}$-axis, we have:

$$
\left[\hat{H}, \hat{\jmath}_{z}\right]=0
$$

Projections of Angular Momenta Are Conserved in the Presence of Axial Symmetry

- Therefore we have 2 solutions

$$
\frac{\hat{H} \varphi_{\nu, m_{\nu}}=e_{\nu, m_{\nu}} \varphi_{\nu, m_{\nu}}}{\hat{\jmath}_{z} \varphi_{\nu, m_{\nu}}=m_{\nu} \varphi_{\nu, m_{\nu}}}
$$

- Maximum alignment Ansatz

$$
I \approx M=\sum_{\nu} \boldsymbol{m}_{\nu}
$$

Single-Nucleon Alignment



## Following A. Bohr: Tilted Fermi Surface Method

- Find the minimum of the sum $E=\sum_{\nu} e_{\nu}$ of single nucleon energies under the condition that the spin $\boldsymbol{M}=\sum_{\nu} \boldsymbol{m}_{\nu}$ has 'user' prescribed value


## Following A. Bohr: Tilted Fermi Surface Method

- Find the minimum of the sum $E=\sum_{\nu} \boldsymbol{e}_{\nu}$ of single nucleon energies under the condition that the spin $\boldsymbol{M}=\sum_{\nu} \boldsymbol{m}_{\nu}$ has 'user' prescribed value
- After Lagrange multiplier theorem, finding the conditional minimum is equivalent to finding the unconditional minimum of a new auxiliary function

$$
\tilde{E} \equiv E-\omega M ; \quad \omega=\text { Lagrange multiplier }
$$

## Following A. Bohr: Tilted Fermi Surface Method

- Find the minimum of the sum $E=\sum_{\nu} \boldsymbol{e}_{\nu}$ of single nucleon energies under the condition that the spin $\boldsymbol{M}=\sum_{\nu} \boldsymbol{m}_{\nu}$ has 'user' prescribed value
- After Lagrange multiplier theorem, finding the conditional minimum is equivalent to finding the unconditional minimum of a new auxiliary function

$$
\tilde{E} \equiv E-\omega M ; \quad \omega=\text { Lagrange multiplier }
$$

- In other words minimise $\tilde{E}=\sum_{\nu}\left(e_{\nu}-\omega m_{\nu}\right)$ what is equivalent to finding all points lying below the line $y \equiv e+\omega m$ called "tilted Fermi surface


Here: just 'normal' i.e. un-tilted Fermi surface

## Following A. Bohr: Tilted Fermi Surface Algorithm

- Find the minimum of the sum $E=\sum_{\nu} \boldsymbol{e}_{\nu}$ of single nucleon energies under the condition that the $\operatorname{spin} \boldsymbol{M}=\sum_{\nu} \boldsymbol{m}_{\nu}$ has 'user' prescribed value
- After Lagrange multiplier theorem, finding the conditional minimum is equivalent to finding the unconditional minimum of a new auxiliary function

$$
\tilde{E} \equiv E-\omega M ; \quad \omega=\text { Lagrange multiplier }
$$

- In other words minimise $\tilde{E}=\sum_{\nu}\left(e_{\nu}-\omega m_{\nu}\right)$ what is equivalent to finding all points lying below the line $y \equiv e+\omega m$ called "tilted Fermi surface


Here: The first titled solution

## Following A. Bohr: Tilted Fermi Surface Method

- Find the minimum of the sum $E=\sum_{\nu} \boldsymbol{e}_{\nu}$ of single nucleon energies under the condition that the spin $\boldsymbol{M}=\sum_{\nu} \boldsymbol{m}_{\nu}$ has 'user' prescribed value
- After Lagrange multiplier theorem, finding the conditional minimum is equivalent to finding the unconditional minimum of a new auxiliary function

$$
\tilde{E} \equiv E-\omega M ; \quad \omega=\text { Lagrange multiplier }
$$

- In other words minimise $\tilde{E}=\sum_{\nu}\left(e_{\nu}-\omega m_{\nu}\right)$ what is equivalent to finding all points lying below the line $y \equiv e+\omega m$ called "tilted Fermi surface


Here: The second titled solution

## Next step:

Since the titled-Fermi surface solutions come in jumps we fill in the missing spin values constructing the particle-hole excitations with respect to the Lagrange solutions the latter guaranteed*) yrast!
*) Guaranteed - as the result of the Lagrange minimisation theorem

## Particle-Hole Excitations Generate Yrast

- Because of all the jumps and irregularities the resulting $n$ particle $n$-hole excitations are irregular forming local minima (called "yrast traps")
Energy


$$
E^{*}=\sum_{p} e_{p, m_{p}}-\sum_{h} e_{h, m_{h}} \text { and } I \approx M^{*}=\sum_{p} m_{p}-\sum_{h} m_{h}
$$

## Next step:

## REALISTIC CALCULATIONS and COMPARISON with EXPERIMENT



Experimentally known isomers [Theoretical $I^{\pi}$ from the diagrams]

$$
I^{\pi}=21 / 2^{+} \leftrightarrow 4.50 \mathrm{~ns}
$$

$$
I^{\pi}=27 / 2^{-} \leftrightarrow 26.8 \mathrm{~ns}
$$

$$
I^{\pi}=49 / 2^{+} \leftrightarrow 530 \mathrm{~ns}
$$



Experimentally known isomers [Theoretical $I^{\pi}$ from the diagrams]

$$
\text { G.s. : } I^{\pi}=7 / 2^{-} \leftrightarrow 38 h
$$

$$
I^{\pi}=9 / 2^{-} \leftrightarrow 0.35 \mathrm{ps}
$$

$$
I^{\pi}=13 / 2^{+} \leftrightarrow 21.4 \mathrm{~ns}
$$



Spins \& parities of all experimentally known isomers can be deduced from the diagrams:

$$
\text { E.g. : } \quad I^{\pi}=19 / 2^{-} \leftrightarrow 0.37 n s \text { is given by }\left[\pi d_{5 / 2}^{-2}\right]_{0} \times\left[h_{11 / 2}^{2}\right]_{6}^{\max } \times \nu\left[f_{7 / 2}^{1}\right]_{7 / 2}^{\max }
$$

How Powerful the Approach Is $\rightarrow$ See Experiment IV

- Yrast line: Attention! Highly non-trivial numerical effort involving $N \sim 10^{6}$ particle-hole configurations! Minimised over $\alpha_{20}, \alpha_{40}$, etc.
- Yrast line: Attention! Highly non-trivial numerical effort involving $N \sim 10^{6}$ particle-hole configurations! Minimised over $\alpha_{20}, \alpha_{40}$, etc.
- Here: Yrast ${ }^{147} \mathrm{Gd}$ sequence calculated using the realistic phenomenological WS-universal mean field approach.

- Yrast line: Attention! Highly non-trivial numerical effort involving $N \sim 10^{6}$ particle-hole configurations! Minimised over $\alpha_{20}, \alpha_{40}$, etc.
- Here: Yrast ${ }^{147} \mathrm{Gd}$ sequence calculated using the realistic phenomenological WS-universal mean field approach.
- The energy of each state has been minimised over several axial-symmetry deformation parameters.

- Yrast line: Attention! Highly non-trivial numerical effort involving $N \sim 10^{6}$ particle-hole configurations! Minimised over $\alpha_{20}, \alpha_{40}$, etc.
- Here: Yrast ${ }^{147} \mathrm{Gd}$ sequence calculated using the realistic phenomenological WS-universal mean field approach.
- The energy of each state has been minimised over several axial-symmetry deformation parameters.
- We consider the number of meanfield configurations comparable to the sizes of the typical spherical shell-model Hamiltonian.
- Yrast line: Attention! Highly non-trivial numerical effort involving $N \sim 10^{6}$ particle-hole configurations! Minimised over $\alpha_{20}, \alpha_{40}$, etc.
- Here: Yrast ${ }^{147} \mathrm{Gd}$ sequence calculated using the realistic phenomenological WS-universal mean field approach.
- The energy of each state has been minimised over several axial-symmetry deformation parameters.
- We consider the number of meanfield configurations comparable to the sizes of the typical spherical shell-model Hamiltonian.
- It is natural to ask:

How many parameters have been
fitted to obtain the result on the right?

How Powerful the Approach Is $\rightarrow$ See Experiment V

- 'Inverted Parabola Patterns' as the signs of the $\left\{j^{2}\right\}$-configurations


## How Powerful the Approach Is $\rightarrow$ See Experiment V

- 'Inverted Parabola Patterns' as the signs of the $\left\{j^{2}\right\}$-configurations
- One shows that "umbrella patterns" lead to a very strong derived property: Configurations of 2 nucleons in a $j$-shell form the "inverted parabolic patterns":
$E_{j^{2} \rightarrow 0}, \quad E_{j^{2} \rightarrow 2}, E_{j^{2} \rightarrow 4}, \ldots E_{j^{2} \rightarrow I_{\max }}$,
For instance : $f_{7 / 2}^{2} \rightarrow I=0,2,4,6$

- 'Inverted Parabola Patterns' as the signs of the $\left\{j^{2}\right\}$-configurations
- One shows that "umbrella patterns" lead to a very strong derived property: Configurations of 2 nucleons in a $j$-shell form the "inverted parabolic patterns":
$E_{j^{2} \rightarrow 0}, \quad E_{j^{2} \rightarrow 2}, E_{j^{2} \rightarrow 4}, \ldots E_{j^{2} \rightarrow I_{\max }}$,
For instance : $f_{7 / 2}^{2} \rightarrow I=0,2,4,6$
- We show 2 sequences of $f_{7 / 2}^{2}$-type, the first one built on the ground-state and yet another one, on the maximumalignment $h_{9 / 2}^{2}$ excited configuration.



## - 'Inverted Parabola Patterns' as the signs of the $\left\{j^{2}\right\}$-configurations

- One shows that "umbrella patterns" lead to a very strong derived property: Configurations of 2 nucleons in a $j$-shell form the "inverted parabolic patterns":
$E_{j^{2} \rightarrow 0}, \quad E_{j^{2} \rightarrow 2}, \quad E_{j^{2} \rightarrow 4}, \ldots E_{j^{2} \rightarrow I_{\max }}$,
For instance : $f_{7 / 2}^{2} \rightarrow I=0,2,4,6$
- We show 2 sequences of $f_{7 / 2}^{2}$-type, the first one built on the ground-state and yet another one, on the maximumalignment $h_{9 / 2}^{2}$ excited configuration.
- The inverted parabola patterns are easily spotted in the decay spectra and can be used to identify these relatively simple configurations.



## One can also say:

The quality of the description is a sign of "predictive power"

## One can also say:

The quality of the description is a sign of "predictive power"

- Is this just the case of reproduction by fitting?


## One can also say:

The quality of the description is a sign of "predictive power"

- Is this just the case of reproduction by fitting?
- Or rather a manifestation of predictive power?


## One can also say:

The quality of the description is a sign of "predictive power"

- Is this just the case of reproduction by fitting?
- Or rather a manifestation of predictive power?

In other words: How many parameters are fitted to spectra?

## One can also say:

The quality of the description is a sign of "predictive power"

- Is this just the case of reproduction by fitting?
- Or rather a manifestation of predictive power?

In other words: How many parameters are fitted to spectra?

NONE - no parameter adjusted to the presented data; This is what is meant as Woods-Saxon Universal mean-field

## What Do We Learn From Measuring K-Isomers?

## What Do We Learn From Measuring K-Isomers?

- Establish areas of existence of axial symmetry, as opposed to non-axiality, throughout the Periodic Table. But: Why some (Z,N)-combinations induce axial symmetry and others do not?


## What Do We Learn From Measuring K-Isomers?

- Establish areas of existence of axial symmetry, as opposed to non-axiality, throughout the Periodic Table. But: Why some (Z,N)-combinations induce axial symmetry and others do not?
- The axial-symmetry nuclei may choose to rotate collectively

$$
\left(\vec{I} \perp \mathcal{O}_{\text {symmetry }}\right)-\text { bands }
$$

as alternative to

$$
\left(\vec{l} \| \mathcal{O}_{\text {symmetry }}\right)-\text { isomers }
$$

or both at the same shape at the same time (in competition). Why? Which mechanisms cause this or that behaviour?

## Suppose We Give Ourselves the Means For Studying K-Isomers: Part II

## What Do We Learn From Measuring K-Isomers?

## What Do We Learn From Measuring K-Isomers?

- K-isomers may live longer or even much longer compared with the related ground states $\rightarrow$ This allows extending the experimental accessibility to the New Areas of Exotic Nuclei!


## What Do We Learn From Measuring K-Isomers?

- K-isomers may live longer or even much longer compared with the related ground states $\rightarrow$ This allows extending the experimental accessibility to the New Areas of Exotic Nuclei!
- The life-times of K-isomers vary dramatically over many the orders of magnitude providing precious information about:
- The configuration changes via decay: (np-nh) $\rightarrow$ (n'p-n'h)
- Signals of spontaneous axial-symmetry breaking [K-mixing]


## What Do We Learn From Measuring K-Isomers?

- K-isomers may live longer or even much longer compared with the related ground states $\rightarrow$ This allows extending the experimental accessibility to the New Areas of Exotic Nuclei!
- The life-times of K-isomers vary dramatically over many the orders of magnitude providing precious information about:
- The configuration changes via decay: (np-nh) $\rightarrow$ (n'p-n'h)
- Signals of spontaneous axial-symmetry breaking [K-mixing]
- By the way: No serious tests of the mean-field theory are possible without the cross-checking of the above information!

