

Progress of the Cryopump for PANDA

Christian Mannweiler Institut für Kernphysik WWU 16.06.2021

wissen.leben

Review of last time

- Design for the beam pipe section containing the cryopump.
- Simulations of the effects of uneven distribution of rest gas on the regeneration interval.
- Temperature simulations concerning the effects of glue and activated charcoal

• Today: First experimental results!

Experimental setup:

Temperature diodes 4

- Dimensions: 40mm x 87.5mm
- Pumping area: 35 cm²

Experimental Setup:

Experimental results

Experimental results

Cryopump-Test-with-heatshield Flow: 3ml/min

- This particular cryopump has a pumping speed of ≈ 800l/s and a capacity of ≈ 413mbar*L
- Extrapolating to a full size cryopump for PANDA:
 - Pumping speed of ≈ 100,000l/s
 - Regeneration interval of ≈ 2 months (assuming outgassing rate of 0.01 mbar*l/s)

Next steps:

• A prototype crypump is being designed

• Modular design

• Testbed for features such as gentle degas mode

Next steps:

• A prototype crypump is being designed

• Modular design

• Testbed for features such as gentle degas mode

Summary

- A small test cryopump was built and tested:
 - PANDA cryopump has a pumping speed of ≈ 100,000l/s and a regeneration interval of 2 months

• A prototype is being designed which will form the basis for the final cryopump

Thank you for your attention Are there any questions?

wissen.leben