Final results on $\bar{p}p \to \bar{\Lambda}\Lambda$ Analysis with Extended Target

Adeel Akram

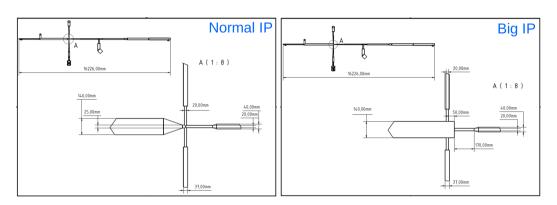
Uppsala University adeel.akram@physics.uu.se

PANDA Collaboration Meeting (GSI, Germany)

June 16, 2021

Outline

- Motivation
- Vacuum scenarios (extended target)
- Benchmark analysis $(\bar{p}p \to \Lambda \bar{\Lambda} \to \bar{p}\pi^+ p\pi^-)$
- Summary of Results
- Outlook


Motivation

- Presence of residual gas in the beam pipe
 - ► Effectively larger target
 - ▶ Vacuum simulations performed by cluster-jet target group at Münster.
- $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis as benchmark
 - Well studied channel
 - ▶ Displaced vertices, special for background suppression
 - ► Expertise at Uppsala
- $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis for extended target.

Location of Vacuum Pumps

IP Configurations

NOTE: BigIP has been dropped due to (i) results not significantly different from NormalIP, (ii) requires changes in MVD due to larger scattering matrix.

Vacuum Studies

Four different scenarios have been studied [A. Khoukaz (CM 20/1)]

- NormalIP¹
- NormalIP + Cryo Pumps
- BigIP²
- BigIP + Cryo Pumps

(+) Four **extended target** profiles are provided by Münster group (April 21, 2021).

original IP geometry with 140mm upstream beam pipe

²proposed IP geometry with large scattering chamber

Benchmark Analysis

The exclusive $\bar{p}p \to \Lambda \bar{\Lambda} \to \bar{p}\pi^+p\pi^-$ analysis as a benchmark

- Point-like target
- \bullet 10⁶ events at 1.642 GeV/c
- EvtGen as simulator (Signal and Non-resonant Bkg.)
- Ideal Reco and Ideal PID algorithms
- Event selection is based on Walter's Ph.D. thesis

Replicate $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis for

- Extended target
- (+) Software stack includes FairSoft (nov20), FairRoot (18.6.1) & PandaRoot (12.0.1)

Simulated Samples

$$w_{\rm bkg.} = \frac{N_{\rm signal}}{N_{\rm background}} \cdot \frac{\sigma(\bar{p}p \to \bar{p}\pi^+p\pi^-)}{\sigma(p\bar{p} \to \Lambda\bar{\Lambda}) \cdot BR(\Lambda \to p\pi)^2}$$

$\operatorname{Channel}$	$\bar{p}p \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$	$\bar{p}p \to \bar{p}\pi^+p\pi^-$
Sample	10^{6}	10^{6}
Cross section $[\mu b]$	64	15.4
Weighting factor	1	0.589

Note: Weights are applied whenever signal & background samples are compared.

Figure of Merit (FoM)

The figure-of-merit (FoM) is the expected ratio of events from the signal and the non-resonant background weighted with ratios of respective cross-sections:

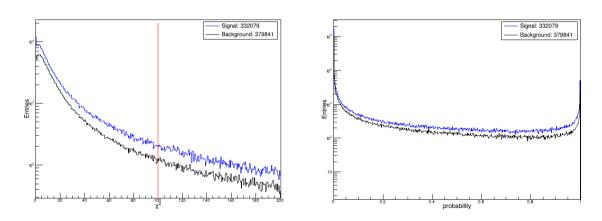
$$FoM = \frac{\epsilon(p\bar{p} \to \Lambda\bar{\Lambda})}{\epsilon(p\bar{p} \to \bar{p}\pi^+p\pi^-)} \cdot \frac{\sigma(p\bar{p} \to \Lambda\bar{\Lambda}) \cdot BR(\Lambda \to p\pi^-)^2}{\sigma(p\bar{p} \to \bar{p}\pi^+p\pi^-)}$$

where ϵ is the efficiency for a given channel, $\sigma(p\bar{p}\to\Lambda\bar{\Lambda})=64.1\pm0.4\pm1.6~\mu b$, $BR(\Lambda\to p\pi^-)=63.9\pm0.5\%$ and $\sigma(p\bar{p}\to\bar{p}\pi^+p\pi^-)=15.4\pm5.2~\mu b$.

Pre-selection Criteria

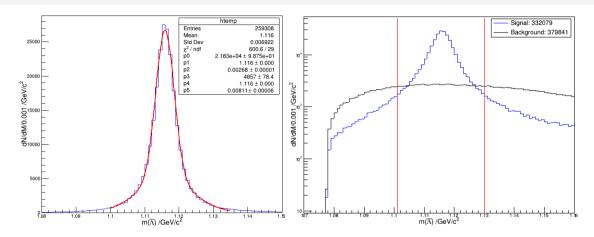
The following pre-selection criteria is used:

- Events with at least 4 charged tracks
- All possible combinations of $p\pi^-$ and $\bar{p}\pi^+$ are considered.
- Invariant mass of $p\pi^-$ fulfills $|m(\Lambda) m(p\pi^-)| < 0.3 \text{ GeV}/c^2 + \text{c.c.}$
- Vertex fit on all $\Lambda, \bar{\Lambda}$ candidates, reject those with prob < 0.01.
- For multiple $\Lambda/\bar{\Lambda}$ candidates, keep those with smallest χ^2 value.
- $\Lambda, \bar{\Lambda}$ candidates are combined to reconstruct the $p\bar{p}$ system.
- A successful 4C-fit is required to reconstruct $\bar{p}p$.


After pre-selection, at-most one $\Lambda\bar{\Lambda}$ pair exists per event.

Final Selection Criteria

The following final selection is used:


- 4C fit quality:
 - $\chi_{4C}^2 < 100$
- Mass criteria:
 - $|m_{fit}(p\pi^{-}) m_{PDG}(p\pi^{-})| < 5 \cdot \sigma_{m_{fit}}(p\pi^{-}) \text{ GeV}/c^{2}$
 - $|m_{fit}(\bar{p}\pi^+) m_{PDG}(\bar{p}\pi^+)| < 5 \cdot \sigma_{m_{fit}}(\bar{p}\pi^+) \text{ GeV/c}^2$
- The z distance from IP (displaced decay vertex)
 - $ightharpoonup z_{fit}(\Lambda) + z_{fit}(\bar{\Lambda}) > 2 \text{ cm}$

Final Selection: $\chi^2_{4c} < 100$

 χ^2 cut removes $\sim 22\%$ events in addition to pre-selection.

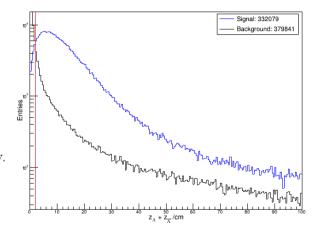
Final Selection: Mass cut on $m(\bar{p}\pi^+)$

Double Gaussian fit is used to obtained the mass resolution:

$$\Rightarrow \sigma_{m_{fit}}(\bar{p}\pi^{+}) = 2.680 \cdot 10^{-3} \text{ GeV/c}^{2}$$

→□▶ →□▶ → □▶ → □ ● のQで

Final Selection: Mass cut on $m(p\pi^-)$

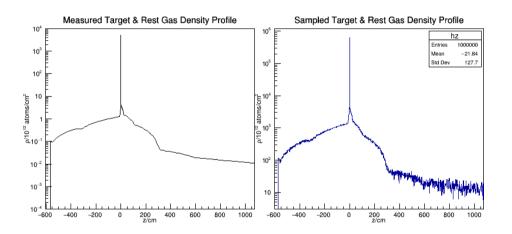

Double Gaussian fit is used to obtained the mass resolution:

$$\Rightarrow \sigma_{m_{fit}}(p\pi^-) = 2.756 \cdot 10^{-3} \text{ GeV/c}^2$$

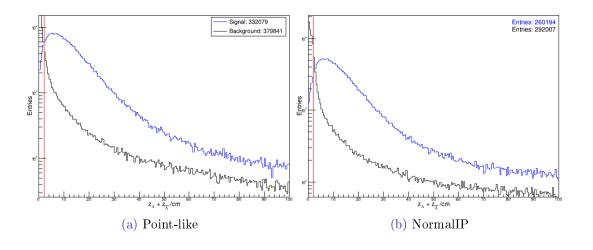
→□▶ →□▶ → □▶ → □ ● のQで

Final Selection: $z_{\bar{\Lambda}} + z_{\Lambda} > 2$ cm

- Decay vertex cut has significant impact on background suppression.
- Suppression power of this cut will be different for various target profiles.
- One can optimize this cut for different targets which will increase the efficiency.



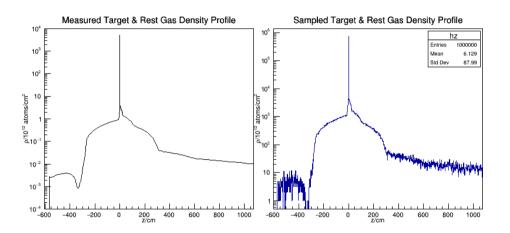
Final Efficiency: Point-like Target


$\operatorname{Channel}$	$p\bar{p} \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$	$p\bar{p} \to \bar{p}\pi^+p\pi^-$
Generated	10^{6}	10^{6}
Pre-selection	332079	379841
$\chi^2 < 100$	259308	307342
Mass cut	222344	28787.0
$z_{\bar{\Lambda}} + z_{\Lambda} > 2 \text{ cm}$	200772	3443.00
Efficiency %	20.1 ± 0.05	0.34 ± 0.006

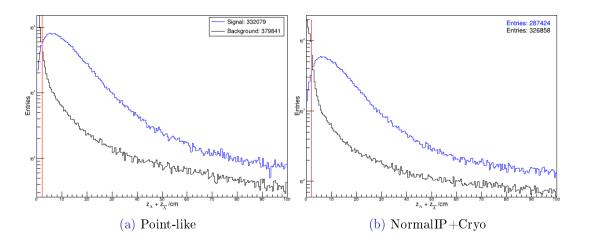
$$FoM = 99$$

Density Profile: Extended Target (NormalIP)

Decay Vertex Cut: Point-like v.s. NormalIP



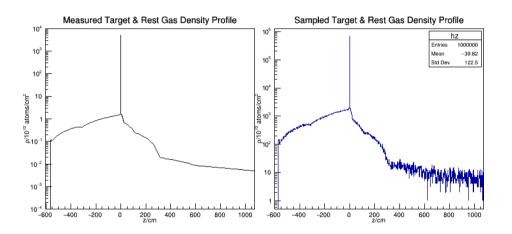
Final Efficiency: Extended Target (NormalIP)


Channel	$p\bar{p} \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$	$p\bar{p} \to \bar{p}\pi^+p\pi^-$
Generated	10^{6}	10^{6}
Pre-selection	260194	292007
$\chi^2 < 100$	205461	238505
Mass cut	175180	23722.0
$z_{\bar{\Lambda}} + z_{\Lambda} > 2$	155239	5929.00
Efficiency %	15.5 ± 0.04	0.59 ± 0.008

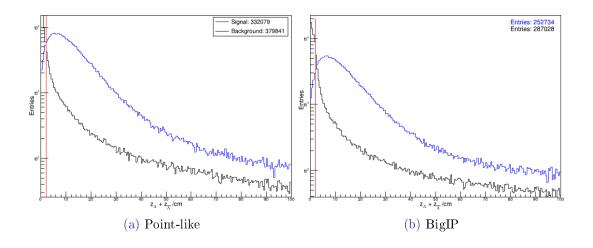
$$FoM_{ext.,1} = 42$$

Density Profile: Extended Target (NormalIP+Cryo)

Decay Vertex Cut: Point-like v.s. NormalIP+Cryo



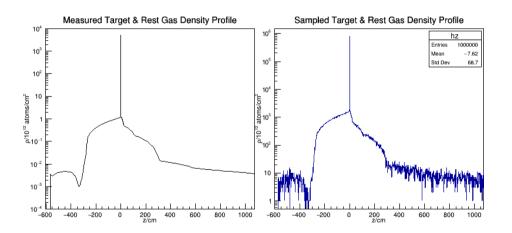
Final Efficiency: Extended Target (NormalIP+Cryo)


$\operatorname{Channel}$	$p\bar{p} \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$	$p\bar{p} \rightarrow \bar{p}\pi^+p\pi^-$
Generated	10^{6}	10^{6}
Pre-selection	287424	326858
$\chi^2 < 100$	227306	266872
Mass cut	193980	26611.0
$z_{\bar{\Lambda}} + z_{\Lambda} > 2$	173597	6503.00
Efficiency %	17.4 ± 0.04	0.65 ± 0.008

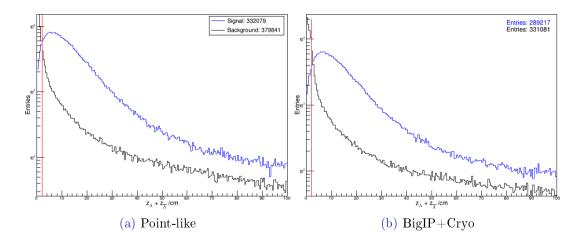
$$FoM_{ext.,2} = 45$$

Density Profile: Extended Target (BigIP)

Decay Vertex Cut: Point-like v.s. BigIP



Final Efficiency: Extended Target (BigIP)


$\operatorname{Channel}$	$p\bar{p} \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$	$p\bar{p} \rightarrow \bar{p}\pi^+p\pi^-$
Generated	10^{6}	10^{6}
Pre-selection	252734	287028
$\chi^2 < 100$	198170	233143
Mass cut	168824	22974.0
$z_{\bar{\Lambda}} + z_{\Lambda} > 2$	147868	4662.00
Efficiency %	14.8 ± 0.04	0.47 ± 0.007

$$FoM_{ext.,3} = 54$$

Density Profile: Extended Target (BigIP+Cryo)

Decay Vertex Cut: Point-like v.s. BigIP+Cryo

Final Efficiency: Extended Target (BigIP+Cryo)

$\operatorname{Channel}$	$p\bar{p} \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$	$p\bar{p} \to \bar{p}\pi^+p\pi^-$
Generated	10^{6}	10^{6}
Pre-selection	289217	331081
$\chi^2 < 100$	226578	268365
Mass cut	193307	26755.0
$z_{\bar{\Lambda}} + z_{\Lambda} > 2$	171472	5086.00
Efficiency %	17.1 ± 0.04	0.51 ± 0.007

$$FoM_{ext.,4} = 57$$

Summary

Target	$\epsilon_{sig} [\%]$	$\epsilon_{bkg} [\%]$	FoM
Point-like	20.1 ± 0.05	0.34 ± 0.006	99
NormalIP	15.5 ± 0.04	0.59 ± 0.008	44
${\bf Normal IP}{+}{\bf Cryo}$	17.4 ± 0.04	0.65 ± 0.008	45
BigIP	14.8 ± 0.04	0.47 ± 0.007	54
${\rm BigIP\!+\!Cryo}$	17.1 ± 0.04	0.51 ± 0.007	57

- Optimizing the decay vertex cut will slightly increase the FoM for extended cases. Their relative mutual difference might not change significantly.
- Significant difference between point-like & extended cases which can't be ignored.
- The difference between BigIP and NormalIP seems not catastrophic. However, there is reasonable increase in FoM from NormalIP (+Cryo) to BigIP (+Cryo) configurations.

Outlook

- Updated IP configuration (alternative to BigIP) will be analyzed
- Decay vertex cut can be optimized for extended target cases.
- An release note will be submitted soon on these results.
- The results will be presented in upcoming Nordic Physics Days 2021.

Questions?

Backup Slides