PANDA FRICH status

Sergey Kononov

Budker Institute of Nuclear Physics, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia

PANDA Collaboration Meeting 21/2

15 June 2021

FRICH baseline design

FRICH status as of February 2020

- FRICH prototype equipped with a stacked 2-layer aerogel radiator, flat mirror, 4 MaPMTs and DiRICH readout was tested with the 3 GeV electron beam at BINP in June 2019
- Test beam results including single photon ۲ resolution, number of photoelectrons have been obtained. In spite of worse than expected SPR and Np.e. evaluated π/K separation power at P=10 GeV/c (3.4σ) is good enough.

- Detector integration steps were described
- LV&HV system is to be designed ٠
- Construction plans and cost estimation are to be updated
- TDR is to be written by mid-2020

Cherenkov ring from 2019 test beam

Status of FRICH R&D as of June 2021

- Main R&D from FRRC funding finished in 2017
- Small NSU funding stopped in 2020
- An application to RFBR in 2015 fund was unsuccessful. New applications seem to be pointless.
- No active developers on the project since beginning of 2020
- No active work on FRICH TDR
- But some other FARICH R&D is ongoing at BINP mostly connected to the Super Charm-Tau Factory

Event reconstruction using Neural Networks

Motivation

- Alternating approach to event reconstruction with a potential to include all observed data without knowing PDFs → flexibility
- More straightforward and attractive for developer

Implementation (started in Fall 2020)

- Python with Pandas, TensorFlow etc. packages
- Geometrical reconstruction of hit θ_c , ϕ_c , then NN training
- Obtain particle's
 β from a single
 NN output

hidden layer 1 hidden layer 2 hidden layer n

neural network

SCTF FARICH simulated configuration

Photon detector

- ON Semiconductor (SensL) ArrayJ-30020-64P-PCB
- Pixel size 3.16×3.16 mm²
- Pixel pitch 3.36 mm
- U_{bias} = 2.5V
- λ_{max}≈400 nm, PDE_{max}≈ 38%
- Sensor geom. fill factor ≈ 88%

Radiator

- 4-layer focusing aerogel
- n_{max} = 1.05
- 35 mm thickness

PD-Radiator distance: 200 mm

Results of NN event reconstruction

 \geq 5.10⁻⁴ β resolution for 1 Mcps/mm² dark count rate

PANDA FRICH status

NN performance

Different binning of hits

Dependance on DCR

Full-scale FARICH prototype with SiPMs

Full-scale prototype will detect full Cherenkov rings with SiPM arrays & compact readout FEE.

- photon detector size ≈21×21 cm²
- 64 × (8×8) = 4096 pixels of 3×3 mm²
- aerogels up to 20×20 cm² size
- aerogel isolated from environment
- folding envelope enabling focal distance adjustments
- liquid cooling system to operate at −30°C (≤ 5%X₀)

Full-scale prototype should be ready for test beam in 2022

R&D of front-end electronics for FARICH with SiPM readout

Objectives:

- High-density electronics with footprint of 3.4x3.4 mm per channel
- Fit SiPMs + FEE into ~5 cm radial space in barrel
- Power consumption as low as possible with a goal of 10-20 mW/ch
- TDC with ~100 ps timing resolution & coarse amplitude measurement (ToT)
- Possibility to cool down to -40°C

Very challenging project!

Status & plans:

- R&D has been started by GSI digital electronics group (M. Traxler) in 2020
- Concept: FPGA-based TDC (TRB3 platform)
- Layouts of 3 of 5 boards are ready
- Production will start in Spring 2021

FARICH FEE module for

3x2 KETEK SiPM arrays

First version of FEE board layouts

Amplifier board

- 27×27 mm² size
- 14-layer PCB
- 30x gain, 64 channels
- couples to KETEK 8×8 SiPM array

TDC board

- 64 channels
- 2 TDC + 4 threshold FPGAs
- 10ps precision

Simulated single photon pulse shapes from amplifier for different input resistance. ~ 22mV amplitude can be achieved.

DC-DC convertor board

- goes behind the backplane
- 51×84 mm² size
- provides power to SiPMs, amplifiers, FPGA
- uses air inductive coils to operate in the detector magnetic field
- power, trigger & clock connectors

PANDA FRICH status

KETEK 64-ch. array & electronics assembly

Full FEE assembly for 6 arrays (384 channels)

