

News from the Transient Recorder ASICs

Holger Flemming

GSI Helmholtzzentrum für Schwerionenforschung GmbH Experiment Electronics Department

June, 15th 2021

Introduction

Analogue Transient Recorder (aka. HitDetection) ASICs Currently two variants under development:

- ±1 V differential input
 - PANDA FMC Readout.
 - Characterisation results → Talk in EMC session of CM 20.3
- CSA input stage
 - PANDA GEM Tracker, SFRS GEM-TPC
 - \bullet Characterisation results \to Talk by P. Wieczorek in FEE session of CM 20.1

Introduction

Generic Architecture

- 16 channel analogue transient recorder
 - Analogue memory 4 rows by 16 columns for each channel
 - 12 bit ADC
 - Data processing (calibration, feature extraction)
- Event buffer with trigger selector ⇒ Triggered and self-triggered operation
- Four serial links with 500 Mbit/s each

Event Triggering

- Input buffer variant
 - ullet Leading edge discriminator and differential trigger mode (ullet Talk in EMC session of CM 20.3)
 - 12 bit threshold DAC
 - Automatic threshold setting (→ Talk in PANDA FEE workshop 2019)
- CSA input variant
 - Leading edge discriminator mode
 - 2nd comparator for continous baseline monitoring
 - Automatic threshold setting and baseline adjustment

Event Triggering

Triggering with CSA input variant

- U_{thres1}, U_{thres2} and U_{ref} generated with 12 bit DACs
- Q₁ used for baseline monitoring
- Q₂ used for trigger
- Baseline adjustment with U_{ref}
- Automatic threshold setting and baseline drift compensation

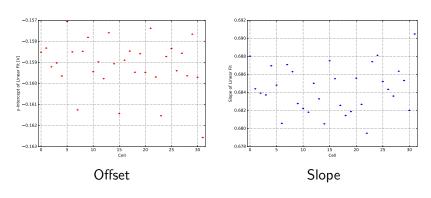
News from the Transient Recorder ASICs

On-Chip Data Processing

Why integrating on-chip data processing?

- ullet CSA variant foreseen for SFRS GEM-TPC Readout \Rightarrow Triggered environment
- Limited Area for Latency Buffers ⇒ Data reduction ⇒ On chip feature extraction
- Memory correction has to be done before feature extraction

All data processing can be disabled, raw data is available!



On-Chip Data Processing / Analogue Memory Correction

Memory cell written with voltage U, readout of charge $q = C_i U$ Capacity variations \Rightarrow slope variations, Offsets due to asymmetries

On-Chip Data Processing / Analogue Memory Correctioin

Measurements by P. Grasemann and O. Noll, HIM

To avoid additional noise variations have to be corrected!

On-Chip Data Processing / Analogue Memory Correctioin

Calibration of memory correction

- Analogue inputs can be connected to internal DACs
- Recorder can be triggered manually / cyclic
 ⇒ Recording of various defined DC levels
- Linear fit $U_{in} \Rightarrow n_{ADC}$ for individual cells
- Calculations of individual correction constants

On-Chip Data Processing / Analogue Memory Correction

On Chip memory correction Unit

On-Chip Data Processing / Feature Extraction

- Feature extraction of short transients (16 samples) differs from continous data streams
 Simulation studies presented in EMC Session of CM Nov. 2018
- Implemented Feature Extraction Processing Unit
 - 3 algorithms for time extraction
 - Configurable window integration for shaped pulses
 - Plateau integration for CSA transients

On-Chip Data Processing / Feature Extraction

Data Transport

- For Serialiser 500 MBit/s on LVDS copper links each
- 1,2,3 or 4 Link operation
- Cross bar switch for link arbitration
- 1 Uplink with asymmetric bit rate

16 Channel Prototype for PANDA

Data Transport

Prototype Production

- Both designs completed.
- Chip area: $5 \times 10 \text{ mm}^2$, each
- Some numbers of input buffer variant:
 - 144 pins
 - 1732354 NMOS transistors
 - 1555283 PMOS transistors
 - 14 675 capacitors
 - 7570 resistors
 - 6 diodes
- Tape out was foreseen for MPW run on May 10th Run was canceled by UMC one week before deadline!
- Currently clarified if engineering run is an option.

Analogue Transient Recorder Backend

Layout of the input buffer variant

