Status of simulation Background study $(p\bar{p} \rightarrow \pi^+\pi^- \text{ and } p\bar{p} \rightarrow K^+K^-)$ New algorithm for track-finder

Anastasia Karavdina

KPH, University Mainz

07/06/2011

Outline

- $◇ p\bar{p} \rightarrow \pi^+\pi^-$ and $p\bar{p} \rightarrow K^+K^-$ (simulation in phase space)
 - Description of simulation
 - Results (and comparison with \bar{p} signal)
- Cellular Automaton as Track Finder
 - Introduction in Algorithm
 - Toy simulation
 - Implementation in PANDAROOT and results

Simulation with **EvtGen**: **PHSP**(phase space model) $P_{beam} = 8.9 \text{ GeV/c}, \theta \in (0,\pi) \text{ rad}, \phi \in (0,2\pi) \text{ rad}.$ 10^6 events

track-candidates: **789** after cuts for $(\theta, \phi)_{trk-cand}$: **334 (0.03%)**

In back-propagation usual assumption for particle is used (\bar{p} and $P = P_{beam}$)

Results

Most of reconstructed particles are π^- (4 tracks from μ^-)

Anastasia Karavdina

9 9.5 P_{MC},GeV/c

0.012

θ_{MC},rad

Comparison results for $\bar{p} \& \pi^{-}$ signal

Distribution for π^- : shifted in X-coordinate and wider in Z-coordinate, but for Y-coordinate looks similar to \bar{p} distribution.

Correct study for nonpoint-like beam is needed! (Include beam/target size and beam emittance)

Anastasia Karavdina Status of simulation

Conclusion

- $p\bar{p} \rightarrow \pi^+\pi^-$ and $p\bar{p} \rightarrow K^+K^-$ were simulated with EvtGen(**PHSP**)
- Due to wrong assumption for back-propagation (particle momentum) is possible distinguish such background from signal (for point-like beam)

Plans

- Model for real cross-section is needed (generator $p\bar{p} \rightarrow \pi^+\pi^-$: M. Zambrana & D.Khaneft)
- Study with beam structure

Cellular Automation as a Track Finder

- A cellular automation for track search successfully used for HERA-B experiment at DESY and as algorithm for hardware trigger for CBM experiment at GSI.
- Authors claim high speed and stability of this algorithm in comparison to any other simple algorithms of track searching.
- Aim of this study:
 - Check it for our case
 - Compare cellular automation with standard track finder for the luminosity monitor

 Cell is a segment connecting two hits in neighboring layers. For taking into account inefficiencies (dead strips and so on) one can build cell skipping over one layer.

Neighbors

 Cells with common point can be considered as neighbors. (track is a straight line -> additional requirement for bend angle of track line in middle point between two cells)

Instead of minimal bend angle -> requirement for distance between common point and line between extremities of cells (d_{max}).

Anastasia Karavdina

Position value of cell

During evolution position value (**pv**) (an integer number) for each cell characterize its position on the track. In the beginning all cells have **pv** equal 1.

Position value of cell

In each step of evolution cell looks on neighbors in the previous layers and increase its **pv** by unit one if there is neighbor with the same **pv**.

Position value of cell

The evolution stops if there is no more neighbors with the same **pv**.

- All cells changing their states simultaneously.
- Track candidates are build from cell with the highest pv, adding its neighbor with (pv-1) and so on.

Test with Toy Simulation

(conditions close to real design of the luminosity monitor)

- ♦ Tracks start from point (0,0,0) with uniformly distributed angles $\phi \in (0, 20^\circ)$ and $\theta \in (0.23^\circ, 0.45^\circ)$
- ◊ Hits are build at z = 1100, 1110, 1120, 1130 cm.
- For taking into account multiple scattering effect each hit has different error respectively to plane position (σ ={10, 31, 71 or 119} μ m)

Determination d_{max}

It's reasonable to set $d_{max} = 20 \mu m$.

Efficiency

N_{trk}	N_{rec}	%(of total)	N_{good}	%(of total)
1	1	100	1	100
5	5	99.1	4	0.9
			5	98.2
	6	0.1	4	0.1
	7	0.1	4	0.1
	8	0.2	4	0.2
	9	0.4	4	0.4
	11	0.1	4	0.1

Test with Toy Simulation(Noise)

Noise hits are uniformly distributed $(X \in [4, 9]cm, Y \in [0, 4]cm)$

Efficiency (with noise)

N_{trk}	N_{rec}	%(of total)	N_{good}	%(of total)
1	1	99.8	1	99.8
	2	0.2	1	0.2
5	4	0.1	4	0.1
	5	98.5	4	1.1
			5	97.4
	6	0.9	5	0.9
	7	0.2	4	0.2
	10	0.2	4	0.2
	11	0.1	4	0.1

New class **PndLmdTrackFinderCATask** with the same interface like **PndLmdTrackFinderTask**

 d_{max} =20 μ m.

Simulation: 5 \bar{p} , P_{beam} =1.5 GeV/c (928 events with 5 tracks = 4640 tracks)

• ghost tracks: 0.8% for CA 3% for TF

For 3 (and more) tracks per event "track-following" algorithm is faster.

Reduction number of cells with $\Delta \phi \& \Delta \theta$ requirements

cut: $\phi \in$ (-0.3, 0.3) rad

cut: $\theta \in$ (0.025, 0.055) rad

Cellular Automation Track-Following

Conclusion

- Cellular Automation was tested in Toy Simulation
- and implemented in PANDAROOT
- For high density of tracks Cellular Automation algorithm has higher efficiency and less number of ghost tracks compare to track-following algorithm
- But speed is not extremely higher

Plans

- Extend algorithm for case with missing plane(s)
- Speed optimization (rewriting software code)

Simulation with **EvtGen**: **PHSP**(phase space model) $P_{beam} = 8.9 \text{ GeV/c}, \theta \in (0,\pi) \text{ rad}, \phi \in (0,2\pi) \text{ rad}.$ 10^6 events

```
track-candidates:

695

after cuts for (\theta, \phi)_{trk-cand}:

341 (0.03%)
```

In back-propagation usual assumption for particle is used (\bar{p} and $P = P_{beam}$)

Results

All of reconstructed particles are K^-

Comparison results for $\bar{p} \& K^-$ signal

Distribution for K^- : shifted in X-coordinate and wider in Z-coordinate, but for Y-coordinate looks similar to \bar{p} distribution.

Correct study for nonpoint-like beam is needed! (Include beam/target size and beam emittance)

Anastasia Karavdina Status of simulation

Background study: Cut for track-candidates

