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Toy simulation
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Bakground study: pp̄ → π+π−

Simulation with EvtGen:

PHSP(phase space model)

Pbeam = 8.9 GeV/c, θ ∈(0,π) rad, φ ∈(0,2π) rad.

106 events
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track-candidates:

789

after cuts for (θ, φ)trk−cand:

334 (0.03%)

In back-propagation usual assumption for particle is used

(p̄ and P = Pbeam)Anastasia Karavdina Status of simulation



Results
Most of reconstructed particles are π− (4 tracks from µ−)
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Comparison results for p̄ & π− signal
X,cmδ
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Distribution for π−:

shifted in X-coordinate and wider in Z-coordinate, but for

Y-coordinate looks similar to p̄ distribution.

Correct study for nonpoint-like beam is needed!

(Include beam/target size and beam emittance)Anastasia Karavdina Status of simulation



Conlusion
pp̄ → π+π− and pp̄ → K+K− were simulated with

EvtGen(PHSP)

Due to wrong assumption for back-propagation

(particle momentum) is possible distinguish such

background from signal (for point-like beam)Plans
Model for real cross-section is needed

(generator pp̄ → π+π−: M. Zambrana & D.Khaneft)

Study with beam structure
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Cellular Automation as a Track Finder

A cellular automation for track search successfully

used for HERA-B experiment at DESY and as algorithm

for hardware trigger for CBM experiment at GSI.

Authors claim high speed and stability of this

algorithm in comparison to any other simple

algorithms of track searching.

Aim of this study:

Check it for our case
Compare cellular automation with standard track
finder for the luminosity monitor
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Cell
⋄ Cell is a segment connecting two hits in neighboring

layers. For taking into account inefficiencies (dead

strips and so on) one can build cell skipping over one

layer.
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Neighbors
⋄ Cells with common point can be considered as

neighbors. (track is a straight line -> additional

requirement for bend angle of track line in middle

point between two cells)

Instead of minimal bend angle -> requirement for

distance between common point and line between

extremities of cells (dmax).Anastasia Karavdina Status of simulation



Position value of ell

During evolution position value [pv] (an integer number)

for each cell characterize its position on the track.

In the beginning all cells have pv equal 1.Anastasia Karavdina Status of simulation



Position value of ell

In each step of evolution cell looks on neighbors in the

previous layers and increase its pv by unit one if there is

neighbor with the same pv.Anastasia Karavdina Status of simulation



Position value of ell

The evolution stops if there is no more neighbors with the

same pv.

All cells changing their states simultaneously.

Track candidates are build from cell with the highest

pv, adding its neighbor with (pv-1) and so on.Anastasia Karavdina Status of simulation



Test with Toy Simulation
(conditions close to real design of the luminosity monitor)

⋄ Tracks start from point (0,0,0) with uniformly distributed

angles φ ∈ (0, 20◦) and θ ∈ (0.23◦, 0.45◦)
⋄ Hits are build at z = 1100, 1110, 1120, 1130 cm.

⋄ For taking into account multiple scattering effect

each hit has different error respectively to plane

position (σ={10, 31, 71 or 119} µm)
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Determination dmax
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It’s reasonable to set dmax = 20µm.Anastasia Karavdina Status of simulation



E�ieny
Ntrk Nrec %(of total) Ngood %(of total)

1 1 100 1 100

5 5 99.1 4 0.9

5 98.2

6 0.1 4 0.1

7 0.1 4 0.1

8 0.2 4 0.2

9 0.4 4 0.4

11 0.1 4 0.1
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Test with Toy Simulation(Noise)
Noise hits are uniformly distributed

(X ∈ [4, 9]cm, Y ∈ [0, 4]cm)
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E�ieny (with noise)
Ntrk Nrec %(of total) Ngood %(of total)

1 1 99.8 1 99.8

2 0.2 1 0.2

5 4 0.1 4 0.1

5 98.5 4 1.1

5 97.4

6 0.9 5 0.9

7 0.2 4 0.2

10 0.2 4 0.2

11 0.1 4 0.1
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Implementation in PANDAROOT
New class PndLmdTrackFinderCATask with the same

interface like PndLmdTrackFinderTask
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dmax=20 µm. Anastasia Karavdina Status of simulation



Cellular Automation vs. Trak-Following: E�ieny
Simulation: 5 p̄, Pbeam=1.5 GeV/c

(928 events with 5 tracks = 4640 tracks)
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Cellular Automation vs. Trak-Following: Speed
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For 3 (and more) tracks per event "track-following"

algorithm is faster.Anastasia Karavdina Status of simulation



Redution number of ells with ∆φ&∆θ requirements
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Conlusion
Cellular Automation was tested in Toy Simulation

and implemented in PANDAROOT

For high density of tracks Cellular Automation

algorithm has higher efficiency and less number of

ghost tracks compare to track-following algorithm

But speed is not extremely higherPlans
Extend algorithm for case with missing plane(s)

Speed optimization (rewriting software code)
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Bakground study: pp̄ → K+K−

Simulation with EvtGen:

PHSP(phase space model)

Pbeam = 8.9 GeV/c, θ ∈(0,π) rad, φ ∈(0,2π) rad.

106 events

track-candidates:

695

after cuts for (θ, φ)trk−cand:

341 (0.03%)

In back-propagation usual assumption for particle is used

(p̄ and P = Pbeam)Anastasia Karavdina Status of simulation



Results
All of reconstructed particles are K−
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Comparison results for p̄ & K− signal
X,cmδ
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Distribution for K−:

shifted in X-coordinate and wider in Z-coordinate, but for

Y-coordinate looks similar to p̄ distribution.

Correct study for nonpoint-like beam is needed!

(Include beam/target size and beam emittance)Anastasia Karavdina Status of simulation



Bakground study: Cut for trak-andidates
θcand and φcand cut tracks from π+ (K+)
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