

Studies on X-band dielectric accelerating structures

Yelong Wei

CERN, European Organization for Nuclear Research

Email: yelong.wei@cern.ch or weiwealong1228@gmail.com

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
- Design of an X-band DLA structure
 - Simulation studies
 - ***** Fabrication and cold-testing of a DLA prototype
 - ✤ Fabrication error analysis
- Summary & Outlook

Outline

Background & Introduction

- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
- Design of an X-band DLA structure
 - Simulation studies
 - Fabrication and cold-testing of a DLA prototype
 - Fabrication error analysis
- Summary & Outlook

RF Cavity Acceleration-Standing wave

An electron travelling close to the speed of light traverses through a cavity. During its transit it sees a time varying electric field. If we use the voltage as complex, the maximum possible energy gain is given by the magnitude,

$$\Delta E = eV_b = e \left| \int_{-L/2}^{+L/2} E_z(z,t) e^{i\omega z/c} dz \right| , V_b \text{ is accelerating voltage}$$

cell

• To receive the maximum kick with multiple cells the particle should traverse the cavity in a half RF period:

 P_{10SS}

$$L = \frac{c}{2f}$$
, *L* is length of a single
Acceleration gradient = $G = \frac{V_{\rm b}}{L}$
Quality factor = $Q_0 = \omega \frac{U}{P_{\rm loss}}$
Shunt impedance = $R_{\rm shunt} = \frac{V_{\rm b}^2}{P_{\rm loss}}$

U is the stored energy, $P_{\rm loss}$ is the power loss on the cavity surface

- electrons β~1 (v~c)
- short pulses
- high frequency
 >3 GHz
- typical 10~20 MV/m
- CLIC:
 - 12 GHz
 - 240 ns
 - 100 MV/m

RF Accelerating Cavities

The objective of the X-band activity is to develop the high-gradient, high-power X-band rf system for the CLIC main linacs. The current focus is on constructing and operating 100 MV/m prototype accelerating structures and establishing a significant high-power testing capability through klystron-based test stands. Additional activities include studies of the fundamental physics of high-gradients, the use of high-gradient technology in other applications such as XFELs and medical linacs and the design of high-efficiency and high frequency klystrons.

• Slow wave accelerators: Irises-loaded accelerating structures

Irises form periodic structure in waveguide:

- Irises reflect part of the wave;
- Irises slow down the phase velocity so that it equals the particle velocity;
- The group velocity is usually around 1% of c.
- In CLIC studies, gradient up to 100 MV/m has been demonstrated at X-band frequency with rf pulses of 100s ns.

CLIC-G Accelerating Structure

Without HOM Damping

Undamped Geometry	CST	HFSS
Phase advance	120°	120°
Frequency [GHz]	11.9949	11.9943
Unloaded Qo	7295.2	7245
<i>r'/Q</i> ₀ [Ω/m]	15892	15924
vg/c	0.018	0.018

With HOM Damping

Test Stands at CERN

- Xbox 1: 50 MW klystron, 50 Hz, connection with CLEAR (e⁻ linac)
- Xbox 2: 50 MW klystron, 50 Hz
- Xbox 3: 4x6 MW klystrons, 400 Hz, 4 structure test slots
- Sbox: 43 MW klystron, 25 Hz, S-band (2.9985 GHz)

50 MW klystron with pulse duration of 1.2 μs

Pulse Compressors

CLIC test platform

Courtesy of slides from Jan Paszkiewicz, CERN

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
- Design of an X-band DLA structure
 - Simulation studies
 - Fabrication and cold-testing of a DLA prototype
 - Fabrication error analysis
- Summary & Outlook

• Slow wave accelerators: dielectric-lined accelerating (DLA) structures

DLA Structures

E-field of the TM01 mode ($v_{ m p}=c$)	Electric energy density
+ · · · · · · · · · · · · · · · · · · ·	
Ez of the TM01 mode ($ u_{ m p}=c$)	Magnetic energy density
Ez of the TM ₀₁ mode ($v_{\rm p} = c$) dielectric	Magnetic energy density
Ez of the TM ₀₁ mode ($v_p = c$) dielectric Vacuum	Magnetic energy density

- 1) The axial accelerating field is the maximum electric field in the structure;
- 2) The phase velocity of TM01 mode can be slowed down to c;
- 3) Most of energy is stored in dielectric area, resulting in low power efficiency.

Dispersion Curves

- The red line for CLIC-G iris gradually saturates, and group velocity gradually decreases to 0 with the increase of phase advance;
- The blue line for DLA structure gradually increases, but group velocity can't be 0 with the increase of phase advance.

RF parameters on DLA structures

	CLIC-G iris structure	Quartz (SiO2)	Diamond	Alumina (Al2O3)	MCT-16	MgCaTi	BaTi
Dielectric constant ε_r		3.75	5.7	9.64	16	20	35
Dielectric loss tangent δ		0.00005	0.0001	0.000006	0.0001	0.0001	0.0001
Structure length [mm]	8.33	8.33	8.33	8.33	8.33	8.33	8.33
Phase advance	120°	120°	120°	120°	120°	120°	120°
Inner radius r1 [mm]	3.15	3.15	3.15	3.15	3.0	3.15	3.15
Outer radius r ₂ [mm]		7.22	6.20	5.364	4.675	4.624	4.245
Frequency [GHz]	11.9943	11.9990	11.9958	11.9966	11.9984	11.9942	11.9919
Unloaded Qo	7245	6127	3998	4231	2468	2214	1691
<i>r'/Q</i> ₀ [Ω/m]	15924	10719	11166	10427	9489	8463	6878
<i>r</i> ' [MΩ/m]	115	66	45	44	23	19	12
vg/c	0.018	0.273	0.183	0.111	0.068	0.057	0.034
Es/Ea	2.4819	1.0757	1.0755	1.0756	1.069	1.0760	1.0760
Es/Ea [dielectric]		1.0289	1.0024	1.0010	1.0	1.0152	1.0141
Power required to generate 100 MV/m [MW]	45.0	1013	652	424	287	266	197

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures

TM01 operation mode

- TM02 operation mode
- Design of an X-band DLA structure
 - Simulation studies
 - Fabrication and cold-testing of a DLA prototype
 - Fabrication error analysis
- Summary & Outlook

DDA Structures-TM01 mode

Dispersion Curves

Geometry parameters	DDA_TM01 mode		
Dielectric constant ϵ_r	9.64		
Dielectric loss tangent δ	6e-6		
Structure length L [mm]	8.333		
<i>r</i> ₁ [mm]	3.15		
<i>r</i> ₂ [mm]	10.59		
D [mm]	2		

- The group velocity for a DDA TM01-mode structure gradually decreases to 0;
- The phase shift of 172°-180° can be chosen to generate a low group velocity for accelerating modes.

Comparisons

	CLIC-G	DLA	DDA_ TM01_0. 96 <i>π</i> -mode	DDA_ TM01_0. 99 <i>π</i> -mode	DDA_ TM01 _π- mode
Dielectric constant ε r		9.64	9.64	9.64	9.64
Dielectric loss tangent		6e-6	6e-6	6e-6	6e-6
Period length [mm]	8.33	8.33	11.94	12.36	12.50
Phase advance	120°	120°	172°	178°	180°
Frequency [GHz]	11.9943	11.9924	11.9973	11.9973	11.9953
Unloaded Q0	7245	4232	14815	14870	14872
<i>r'/Q</i> 0 [Ω/m]	15924	10423	9544	10027	10092
<i>r</i> ' [MΩ/m]	115	44	141	149	150
vg/c	0.018	0.111	0.073	0.018	0
Es/Ea	2.4819	1.0762	4.3071	3.4399	2.8773
Es/Ea [dielectric]		1.0029	0.91723	0.64648	0.65432
Power required to generate 100 MV/m [MW]	45	424	304	71	

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
- Design of an X-band DLA structure
 - Simulation studies
 - Fabrication and cold-testing of a DLA prototype
 - Fabrication error analysis
- Summary & Outlook

DDA Structures-TM₀₂ π-mode

- High order mode operation
 reduces the surface fields;
- The electromagnetic fields can be controlled by dielectric parts;
- Very high power efficiency;
- X-band frequency potentially generates a high accelerating

gradient.

Y. Wei and A. Grudiev, IEEE Transactions on Nuclear Science 68, 1062-1071, May 2021, doi: 10.1109/TNS.2021.3069110.

Regular cell

Most of the RF energy is stored in the vacuum region;
 The total RF loss including both the wall loss on the conducting cylinder and dielectric loss in the DDA structure can be drastically reduced, thereby resulting in both an extremely high quality factor and a very high shunt impedance at room temperature.

Optimization on a regular cell

Optimum parameters	
Dielectric constant $\varepsilon_{ m r}$	9.64
Dielectric loss tangent δ	6E-6
Iris radius r_0 [mm]	3.15
Corner fillet radius r _c [mm]	1.0
Inner radius a_1 [mm]	11.10
Inner radius b_1 [mm]	13.22
Copper radius c_1 [mm]	20.5
Disk thickness d_1 [mm]	2.0
Periodical length L_1 [mm]	12.50
Phase advance	180°
Acceleration mode	TM02 π-mode
Frequency [GHz]	11.9940
Unloaded Q_0	134542
<i>r</i> ′ [MΩ/m]	781

Regular cell with copper plates

Copper plates: 2.8% RF loss comes from dielectric loss, 97.2% RF loss comes from copper wall loss;

 Periodic boundary:
 27.2% RF loss comes from dielectric loss,
 72.8% RF loss comes from copper wall loss; End cell is added to reduce the wall loss

Optimization on end cells

Multi-cell DDA structure

Considerations on the maximum number of cells

Reference: Nagle, Knapp and Knapp, 1964 and 1968

DDA structures with different dielectric loss tangent

Dielectric loss tangent δ affects quality factor Q₀ and shunt impedance r';
 The highest quality factor and shunt impedance: Q₀ = 184000, r' = 1070 MΩ/m;
 When loss tangent δ = 1E-5, Q₀ = 113818, r' = 660.5 MΩ/m. This can be achievable in a relative simpler manufacturing process.

RF Properties

-	
$N_{2\pi/3}^{CLIC-G} = 26$	$\iff N_{\pi}^{DDA} = 18$
<i>N</i> = 18	L = 12.5 mm
$E_{\rm acc}^{\rm Load} = 100 {\rm MV}$	//m
$V_{\rm acc} = NLE_{\rm acc}^{\rm Load}$	= 22.5 MV

$$P_{\rm dis} = \frac{V_{\rm acc}^2}{r'NL} = 2.881 \text{ MW}$$
$$P_{\rm b} = V_{\rm acc}I_{\rm b} = 26.775 \text{ MW}$$
$$P_0 = P_{\rm dis} + P_{\rm b} = 29.656 \text{ MW}$$
$$\beta = \frac{P_0}{P_{\rm dis}} = 10.294$$

$$\tau = \frac{2Q_0}{\omega(1+\beta)} = 316 \text{ ns}$$
$$E_{\text{acc}}^{\text{Unload}} = \sqrt{\frac{P_0 r'}{NL}} = 320.84 \text{ MV/m}$$
$$E_{\text{acc}}^{\text{load}} = E_{\text{acc}}^{\text{Unload}} \left(1 - e^{-\frac{t}{\tau}}\right)$$

RF properties	CLIC-G (28 cells)	DDA (18 regular cells)	DDA (18 regular cells)	
Dielectric loss tangent δ		6E-6	1E-5	
Acceleration mode	2π/3	TM02 π- mode	TM02 π- mode	
Shunt impedance r' [M Ω /m]	92	781	660.5	
Peak input power [MW]	61.3	29.7	30.2	
Loaded gradient $\mathrm{E}^{\mathrm{Load}}_{\mathrm{acc}}$ [MV/m]	100	100	100	
Filling time $t_{ m fill}$ [ns]	67	118	125.4	
$t_{ m b}$ [ns]	155.6	155.6	155.6	
RF to beam efficiency	28.5%	51%	49%	

The average powers dissipated in the dielectrics are 21.5 W and 26 W with different loss tangents of 6E-6 and 1E-5, respectively, at these powers and pulse lengths with a repetition rate of 100 Hz

GSI Accelerator Seminar, 20th May 2021

Adding Damping Waveguide

shunt			7 bunches		Envelope [7 bunches]			
W [mm]	quality factor Q ₀	impedan ce r' [MΩ/m]	F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}
0	134542	819	149	752	5051	4086	2836	19483
8	113810	680	6	37	174	213	149	999
10	103330	612	8	67	408	269	211	1420
12	84336	489	6	26	149	123	101	661
20	< 40000	< 200	15	54	352	40	37	185
BD requirement								

Adding Dielectric Slots (W=12 mm)

Number		quality	quality	shunt		7 bunches			Envelope [7 bunches]		
dielectric slots	D[mm]	factor Q ₀	impedan ce r' [MΩ/m]	F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}		
4	2.0	45286	193	2.1	3.5	13.4	12.3	6.2	34.7		
8	1.5	95052	457	2.9	4.6	19.5	7.6	5.9	33.6		
16	1.0	95450	405	1.1	1.3	2.7	1.9	1.4	4.2		
	BD requ	irement									

Detuning (W=12mm, 16 dielectric slots)

We can adjust b1 and dielectric slots width D to detune the 18-cell DDA structure;

- Each cell has a frequency of 12 GHz;
- □ The step size for *D* is 0.05 mm (blue line) and 0.10 mm (green line).

Number of	7	/ bunche	s	Envelope [7 bunches]			
dielectric slots	F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}	
16	1.049	1.086	1.815	1.227	1.128	2.396	
BD requirement							

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode

Design of an X-band DLA structure

Simulation studies

- Fabrication and cold-testing of a DLA prototype
- Fabrication error analysis
- Summary & Outlook

Dielectric RF property

- A $TE_{01\delta}$ silver-plated resonator with a high quality factor, which is designed for testing ceramics at an X-band frequency, is used to measure the dielectric constant ε_r and loss tangent tan δ of sample coupons.
- Four dielectric coupons made from the same dielectric rods as for the fabrication of the DLA structure are measured.
- A dielectric constant ε_r = 16.66 and an ultralow loss tangent tanδ = 3.43 × 10⁻⁵ (having error bars 0.6% of the nominal value) are obtained for the RF design of the DLA structure and matching sections which follows.

An X-band DLA structure

RF parameters for a DLA

GSI Accelerator Seminar, 20th May 2021

Standard methods for matching between a DLA structure and a circular waveguide

S Parameter Simulation

Adding dielectrics into matching section

Electric fields in the corners

Adding a skew angle θ for Corner 1

- For each skew angle, it is perfectly matched with a $S_{11} < -40$ dB;
- The peak fields in the corner 1 are decreased with a smaller skew angle θ ;
- When $\theta = 70^{\circ}$, the peak fields in the corner 1 equal to the accelerating fields in the DLA structure; 70° is a critical skew angle;
- $\theta = 60^0$ is chosen for the following optimization.

Fillet Corner 2 at a skew angle of 60°

Chamfer Corner 2 at a skew angle of 60°

Skew angle $\theta = 60^{\circ}$, Fillet Corner 2 with a radius $R_{\rm f}$ = 2.0 mm

Chamfer the dielectric corner considering robust fabrication on the dielectric corner

The fields in the matching section are still weaker than those of DLA.

GSI Accelerator Seminar, 20th May 2021

Tolerance studies

S Parameter Plot 2

E-field propagation

E Field [V/m]

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode

Design of an X-band DLA structure

- Simulation studies
- Fabrication and cold-testing of a DLA prototype
- Fabrication error analysis
- Summary & Outlook

- Centre part is the DLA structure while two end parts are mode converters which are also used for coupling RF power into the DLA structure;
- Centre part is connected with end parts through the choke geometry with a Conflat Flange DN75.

Mode converters with a choke

DLA structure

Courtesy of photos from Dr. Chunguang Jing, Euclid Techlabs.

Assembly of mode converters and the DLA structure

Fabricated mode converters

- The 4-port mode converters are used to convert a TE10 mode from a rectangular waveguide to a TM01 mode in the circular waveguide;
- The choke structure is designed to remove the contact issue for assembling two parts together. In this case, the copper disks have no bonding joints.

RF Measurement on assembly of two TE10-TM01 mode converters

GSI Accelerator Seminar, 20th May 2021

RF Measurement on assembly of two TE10-TM01 mode converters and the DLA structure

S-parameters comparison

Power losses calculations from the measured S-parameters

At the designed frequency of 11.994 GHz: S11 = -3.624 dB S21 = -12.51 dB S31 = -8.95 dB S41 = -12.31 dB

For an input power of 1 W at port 1, Reflected power at port 1 is 0.434 W Output power at port 2 is 0.056 W Output power at port 3 is 0.127 W Output power at port 4 is 0.059 W

The total power loss is 1 - 0.434 - 0.056 - 0.127 - 0.059 = 0.324 W It seems that most of RF power can't travel to Port 2 and Port 4.

Bead-pull measurement (Single frequency f = 11.994 GHz)

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode

Design of an X-band DLA structure

- Simulation studies
- Fabrication and cold-testing of a DLA prototype
- ✤ Fabrication error analysis
- Summary & Outlook

Geometrical error analysis

Geometrical error analysis

S-parameters of $W_1 = 2.12 \text{ mm}$ and $W_1 = 2.08 \text{ mm}$ for both matching sections, $r_{in} = 2.99 \text{ mm}$

GSI Accelerator Seminar, 20th May 2021

Changing conductivity of coating silver

- For the simulation modelling, asymmetrical matching sections with $W_1 = 2.12$ mm and $W_1 =$ 2.08 mm for both sides, $r_{in} = 2.99$ mm are used.
- At the designed frequency of 11.994 GHz, when the conductivity of thin coating metal is $\sigma = 5.5 \times 10^5$, $S'_{11} = -10$ dB, $S'_{21} =$ -6.25 dB, which are similar to those of measurement.

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
- Design of an X-band DLA structure
 - Simulation studies
 - Fabrication and cold-testing of a DLA prototype
 - Fabrication error analysis
- Summary & Outlook

Summary & Outlook

 \Box DLA structures and DDA structures operating at TM01 π -mode have been studied;

- **DDA** structures operating at TM02 π -mode:
 - Extremely high quality factor and shunt impedance: $Q_0 = 134525$, r' = 781 M Ω /m;
 - High RF-to-Beam efficiency of ~50%;
 - The number of acceleration cells can be up to 72 due to high bandwidth;
 - Low short-range wakefields.

An X-band DLA structure with matching sections and the TE10-TM01 mode converters is designed, fabricated, and cold-tested.

- The mode converters work well;
- The fabrication error may cause the big discrepancy between the measured and

simulated S-parameters.

□ Further optimization and wakefield studies on DDA TM02 π -mode structure;

Investigations into possible reasons for the discrepancy are ongoing.