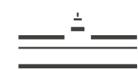

TRD Dielectron Performance Studies

CBM PWG-DIL CBM Meeting

May 14th, 2021

Christoph Blume

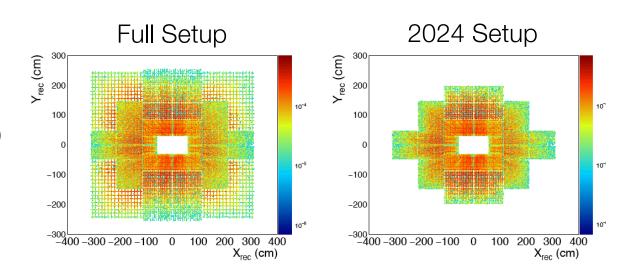
University of Frankfurt



Outline

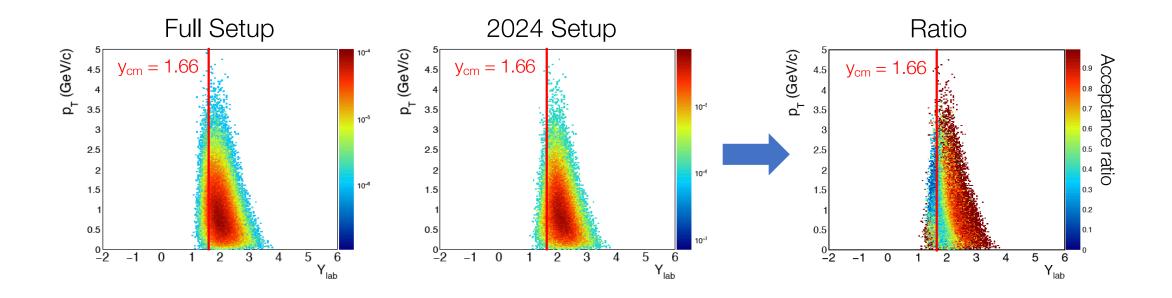
- Impact of a possibly reduced day-1 setup
- Optimization of layer spacing

Module Construction Plan

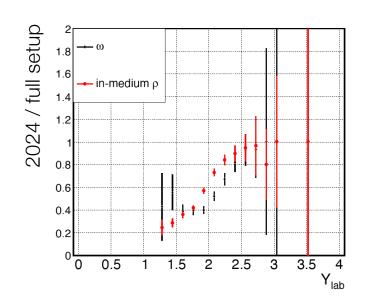

- Planned module construction sequence
 - Frankfurt + Münster:
 Type-5 modules (BMBF funding 19–21)
 Type-3 modules, partially (BMBF funding 21–24)
 Type-7 modules (and rest of type-3?) in 24–25 (funding not yet applied for)
 - Bucharest: Type-1 (inner zone) as TRD-2D, see TDR-addendum (Rest if type-3?)
- Day-1 setup
 - Most reasonable sequence in terms of logistics and physics
 - Complete setup foreseen for 2025
 - Funding for 24–25 open
 - Alternative approach: Built layer-by-layer
 ⇒ Risk of reduced PID capability if only 3 layers ready

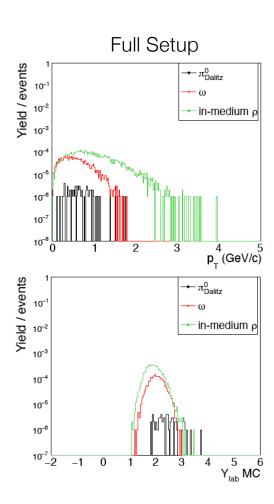
Type 5: BMBF 19–21
Type 3 (partially): BMBF 21–24
Type 1: Romania

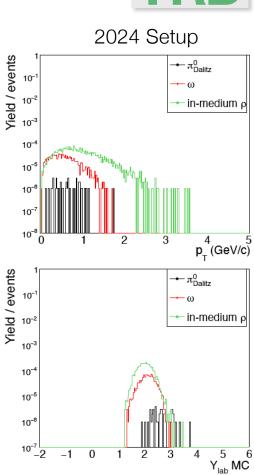
,						ı	
7	7	3	3	3	3	7	7
		3	3	3	3		
7	5	3	3	3	3	5	7
		1	1	1	1		
5	5	1			1	5	5
7	5	1	1	1	1	5	7
		3	3	3	3		
7	7	3	3	3	3	7	7
		3	3	3	3		


- Performance studies with reduced (2024) setup
 - Full PID performance, but reduced acceptance
 - Study of implications on di-electron performance by Etienne Bechtel
- Simulation input
 - Au+Au, 12A GeV, 0-5 %
 - 7·10⁷ UrQMD evts.
 - + LMVM cocktail (η_D , η' , ω_D , ω , φ , ρ^0 , Δ)
 - + thermal radiation (in-medium ρ + QGP) (*)
 - Default SIS100 electron setup
 - Reduced acceptance modeled by discarding tracks in outer modules

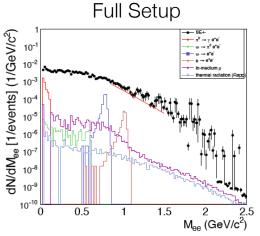
(*) Input files and multiplicities, see: https://cbm-wiki.gsi.de/foswiki/bin/view/PWG/CbmDileptonInfoFiles

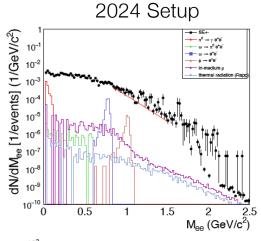


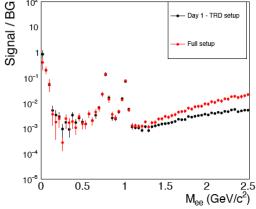

Acceptance for di-electrons



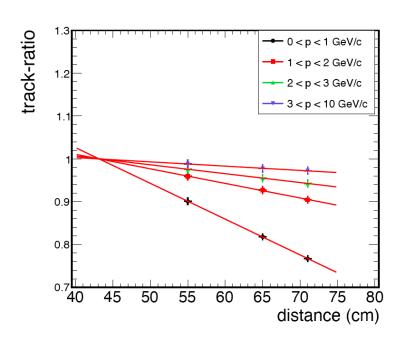
- Di-Electron performance
 - Signal distributions for π^0_{Dalitz} , ω and in-medium ρ
 - ~ 60 % reduction of total acceptance, mainly concentrated at mid-rapidity (y_{lab} < 2)

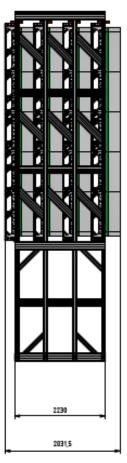






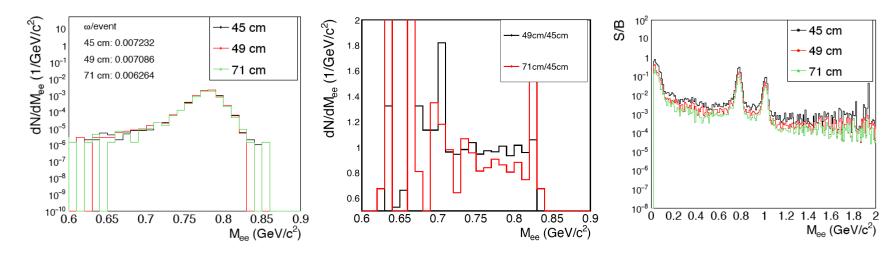
- Di-Electron performance
 - Full di-electron spectrum accessible
 - ~ 60 % reduction of total acceptance
 - Degradation of S/B-ratio at higher masses (Integrated factor ~ 2.5 at $M_{\rm ee} > 2.0$ GeV/ c^2 , less at forward rapidities)
 - Would require additional factor ~4 5 in statistics (less at forward rapidities)
 ⇒ ~ 5 · 10¹⁰ central events
 - Analysis done with fixed PID cuts
 Factor 5 10 improvement in S/B with ML




Layer Spacing

Side view

- TRD support structure (CDR version)
 - Increased layer z-spacing (45 cm \rightarrow 71 cm, for 30 cm radiator)
 - Implications on physics performance
- Di-Electron performance
 - Au+Au, 12A GeV, 0-5 %, UrQMD + $\omega \rightarrow e^+e^-$
 - Minor change in overall acceptance
 - Fraction of tracks with 4 points decreases Less prominent hat higher momenta
 - ⇒ Deterioration of PID performance



Layer Spacing

- Options (currently under discussion)
 - Proposed design with 71 cm distance and accept PID deterioration
 - Integration of radiators in support structure of preceding layer
 - \Rightarrow Pro: reduction of z-spacing to 49 cm possible
 - ⇒ Con: Slightly (~ 2 % in area) smaller radiator required to fit between support structure

Studies, modelling both effects, indicate better performance for 49 cm solution

C. Blume, PWG-DIL Meeting, May 14th, 2021

Conclusions

- Reduced day-1 setup
 - Type-7 and part of type-3 only after 2024
 - Reduced acceptance
 For ω and ρ: ~ 60 % integrated over all rapidities
 ≥ 80 % for y_{lab} > 2
 - Increase of S/B-ratio for $M_{\rm ee} > 2 \,{\rm GeV}/c^2$ by ~ factor 2.5
 - Intermediate mass di-electrons still feasible Higher statistics required and/or reduced *y*-acceptance
- Layer spacing
 - Optimization of geometry on-going ⇒ radiator design and mounting structure
 - Find compromise between stability and physics performance
 - Submit design change request