

HGS-HIRe for FAI

Reconstruction of the e⁺e⁻ signal in p+Nb collisions at 3.5 GeV

M.Lorenz for the HADES collaboration

EMMI mini-Workshop on Vector mesons in cold nuclear matter

Outline:

- General remarks on the measurement
- Reconstruction of e⁺e⁻ pairs
- Comparison of p+p and p+Nb data
 - Kinematical observables
 - Slow and fast vector mesons
- Conclusions and open questions

General remarks

- Change in line shape: decay inside the medium

- Hadronic models: modification in the spectral function most pronounced for low relative momenta

 \rightarrow good acceptance of low momenta pairs

- in dilepton spectra always contributions from ρ and ω mesons

 \rightarrow how to distinguish between a broad ω and a vacuum ρ contribution?

Electron identifcation

Electron identification:

- RICH
- SHOWER
- dEdx (MDC + TOF-walls)

decision based on a neural network

Electron identifcation

Electron identification:

- RICH
- SHOWER
- dEdx (MDC + TOF-walls)

decision based on a neural network

e⁺e⁻ pair reconstruction

e⁺e⁻ pair reconstruction

e⁺e⁻ pair reconstruction

Needed precision of measurement: 10%

S/B= 1 accuracy of background estimation 10%

S/B= 0.1 accuracy of background estimation 1%

S/B= 0.01 accuracy of background estimation 0.1%

Comparison of p+p and p+Nb data

Comparison of the spectra

Comparison of the spectra

Comparison of the spectra

kinematical observable

kinematical observable

kinematic observable

kinematical observable

kinematical observable

kinematical observable I: p, and Y

- shift to target rapidity and slightly higher transverse momenta

kinematical observable II: P_{ee}

- constant ratio in π^0 region
- strong momentum dependence for other regions
- higher values at low momenta: secondary production stronger than absorption?
 Isospin effect important for secondary production?

$$R_{pNb} = \frac{dN/dp^{pNb}}{A_{part}} \cdot dN/dp^{pp}$$

 A_{part} = 2.7 (from Glauber model)

Secondary production and isospin effect

In secondary collisions \sqrt{s} is lower than 3.18GeV, isospin effects might become important. How strong is the contribution of secondary collisions, what is the average \sqrt{s} of this reactions?

- Change in line shape: decay inside the medium

- Hadronic models: modification in the spectral function most pronounced for low relative momenta

Compared to CLAS and KEK-E325 better coverage of slow vector mesons

Compared to CLAS and KEK-E325 better coverage of slow vector mesons \rightarrow compare slow and fast ω with pp reference

- strong difference in spectral function for slow pairs in the vm region

- strong difference in spectral function for slow pairs in the vm region
- two effects:

enhanced ρ -like contribution \rightarrow role of secondary collisions (isospin effect)? ω -absorption \rightarrow in-medium broadening (consistent with CBELSA/TAPS?)

Conclusion and questions

→ R_{pA} strongly momentum dependent (except for pion region), higher values at low momenta (secondary collisions)

• strong difference in spectral function for slow pairs in the vm region compared to pp possible explanation:

ω-absorption \rightarrow in-medium broadening (consistent with CBELSA/TAPS?)

enhanced ρ -like contribution \rightarrow role of secondary collisions (isospin effect)?

Conclusion and questions

→ R_{pA} strongly momentum dependent (except for pion region), higher values at low momenta (secondary collisions)

• strong difference in spectral function for slow pairs in the vm region compared to pp possible explanation:

 ω -absorption \rightarrow in-medium broadening (consistent with CBELSA/TAPS?)

enhanced ρ -like contribution \rightarrow role of secondary collisions (isospin effect)?

Conclusion and questions

→ R_{pA} strongly momentum dependent (except for pion region), higher values at low momenta (secondary collisions)

• strong difference in spectral function for slow pairs in the vm region compared to pp possible explanation:

 ω -absorption \rightarrow in-medium broadening (consistent with CBELSA/TAPS?)

enhanced ρ -like contribution \rightarrow role of secondary collisions (isospin effect)?

Thank you for your attention!

The HADES Collaboration

G. Agakishiev⁸, C. Agodi¹, A. Balanda^{3,e}, G. Bellia^{1,a}, D. Belver¹⁵, A. Belyaev⁶, A. Blanco², M. Böhmer¹¹, J. L. Boyard¹³, P. Braun-Munzinger⁴, P. Cabanelas¹⁵, E. Castro¹⁵, S. Chernenko⁶, T. Christ¹¹, M. Destefanis⁸, J. Díaz¹⁶, F. Dohrmann⁵, A. Dybczak³, T. Eberl¹¹, E. Epple¹¹, L. Fabbietti¹¹, O. Fateev⁶, P. Finocchiaro¹, P. Fonte^{2,b}, J. Friese¹¹, I. Fröhlich⁷, T. Galatyuk⁴, J. A. Garzón¹⁵, R. Gernhäuser¹¹, C. Gilardi⁸, M. Golubeva¹⁰, D. González-Díaz⁴, E. Grosse^{5,e}, F. Guber¹⁰, M. Heilmann⁷, T. Hennino¹³, R. Holzmann⁴, A. Ierusalimov⁶, I. Iori^{9,d}, A. Ivashkin¹⁰, M. Jurkovic¹¹, B. Kämpfer⁵, K. Kanaki⁵, T. Karavicheva¹⁰, D. Kirschner⁸, I. Koenig⁴, W. Koenig⁴, B. W. Kolb⁴, R. Kotte⁵, A. Kozuch^{3,e}, F. Krizek¹⁴, R. Krücken¹¹, W. Kühn⁸, A. Kugler¹⁴, A. Kurepin¹⁰, J. Lamas-Valverde¹⁵, S. Lang⁴, J. S. Lange⁸, K. Lapidus¹⁰, L. Lopes², M. Lorenz⁴, L. Maier¹¹, A. Mangiarotti², J. Marín¹⁵, J. Markert⁷, V. Metag⁸, B. Michalska³, D. Mishra⁸, E. Morinière¹³, J. Mousa¹², C. Müntz⁷, L. Naumann⁵, R. Novotny⁸, J. Otwinowski³, Y. C. Pachmayer⁷, M. Palka⁴, Y. Parpottas¹², V. Pechenov⁸, O. Pechenova⁸, T. Pérez Cavalcanti⁸, J. Pietraszko⁴, W. Przygoda^{3,e}, B. Ramstein¹³, A. Reshetin¹⁰, M. Roy-Stephan¹³, A. Rustamov⁴, A. Sadovsky¹⁰, B. Sailer¹¹, P. Salabura³, A. Schmah⁴, J. Siebenson¹¹, R. Simon⁴, S. Spataro⁸, B. Spruck⁸, H. Ströbele⁷, J. Stroth^{7,4}, C. Sturn⁷, M. Sudol⁴, A. Tarantola⁷, K. Teilab⁷, P. Tlusty¹⁴, M. Traxler⁴, R. Trebacz³, H. Tsertos¹², I. Veretenkin¹⁰, V. Wagner¹⁴, H. Wen⁸, M. Wisniowski³, T. Wojcik³, J. Wüstenfeld⁵, S. Yurevich⁴, Y. Zanevsky⁶, P. Zumbruch⁴

p+Nb: kinematic observables I

p+Nb: kinematic observables II

Higher yield in low momenta region except for π^0 region

p+Nb: kinematic observables P_{ee}

Measured

Momentum transfer

timelike q²<0 Not measured Energy transfer

 $e^+e^- \rightarrow \pi^0$

- Main source: $\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^-$
- Strength of dilepton yield at low masses is due to coupling to baryons!

 Dalitz decays of baryonic resonances – dominant source at low beam energies.

Figure 6: Radial ($b=\sqrt{x^2+y^2}$) vs. longitudinal coordinate (z) of the ω production and decay (left and right panels, respectively). The upper panels show the results for pNb reactions at 3.5 GeV and lower ones for πNb reactions at 1.17 GeV. The full and dashed half-circles correspond to 10% and 90% of the nuclear density, respectively.

Vektormesonen

p+Nb cross section

p+p normalized to number of elastic pp collisions

Kammerud et al. Phys. Rev. D 4 (1971),

p+Nb normalized to HARP π^- data in p+Cu at 4.15 GeV (p,>0.3 GeV)

Analysis by M.Weber, P.Tlusty