Production of charged pions in reaction $\mathrm{p}+\mathrm{Nb}$ at 3.5 GeV

P. Tlustý, M. Weber, P. Salabura

- main motivation - normalization of dilepton results
(cross sections)
specific case: usual method for pp and AA cannot be used no time-of-flight measurement

Normalization of HADES dilepton spectra

$A+A$ reactions - charged pion multiplicities $\left(\mathrm{N}_{\pi}\right.$ per reaction) extraplated to full solid angle
p+p - elastic scattering
p+A

- extrapolation to 4π not possible, highly asymmetric system, target rapidity not covered
- normalization to measured charged pion cross sections from other experiments

Measured π cross sections from pA

$$
\begin{gathered}
200<\mathrm{mom}<1000 \mathrm{MeV} / \mathrm{c} \\
30^{\circ}<\theta<90^{\circ}
\end{gathered}
$$

Bolshakova A. et al. HARP-CDP collaboration
EPJ C63 (2009) 549-609., EPJ C64 (2009) 181-241.

π cross sections from pA - UrQMD

π cross sections from pA comparison to GiBUU

K.Gallmeister, U.Mosel, arXiv:0901.1770 [hep-ex]
http://gibuu.physik.uni-giessen.de/GiBUU/wiki/HarpGallery

Analysis - Event selection and PID

- LVL1 events with $\mathrm{M}_{\text {charged. }}>=3,10 \mathrm{M}$ events analyzed
- LVL1 events with $\mathrm{M}_{\text {charged }}>=2,10 \mathrm{M}$ events analyzed
- UrQMD events, LVL1 emulation, 1 M events analyzed

Theta vs momentum distributions

pion multiplicities - π^{-}

0.28 pi- /LVL1 event
in $200<$ mom <1000
and $30<$ theta <90 (extrap.)

$0.28 \pi^{-} /$LVL1 event in region where HARP shows π^{-}cross section only 7% extrapolation of our data from $30^{\circ}<\theta<80^{\circ}$ to $30^{\circ}<\theta<90^{\circ}$

Pion multiplicities $-\pi^{+} / \pi^{-}$ratio

good ID for π^{+}only for $250<\mathrm{mom}<500$

UrQMD pion multiplicities to 4π

centrality selection

by the M3 LVL1 trigger (UrQMD):

	$<\mathrm{b}>(\mathrm{fm})$	$<\mathrm{M}_{\pi+}>$	$<\mathrm{M}_{\pi-}>$	$<\mathrm{M}_{\pi 0 .}>$
min. bias	4.10	0.648	0.568	0.661
LVL1	3.60	0.775	0.761	0.759

π^{-}multiplicities in HADES acceptance - dependence on trigger

LVL1 trigger multiplicity

UrQMD: ratio M3/min.bias in HADES acceptance region $=1.42$

BUU: ratio M3/min.bias in HADES acceptance region $=1.42$
systematic error $\sim 10 \%$

Comparison to HARP-CDP data

HARP - cross section for pi- in $30<$ theta <90 and $200<$ mom $<1000 \mathrm{MeV} / \mathrm{c}$ for $\mathrm{p}+\mathrm{Cu}$ at $5 \mathrm{GeV} / \mathrm{c}$ ($=4.15 \mathrm{Gev}$ kin. energy) is 162 mb for $\mathrm{p}+$ Ta at $5 \mathrm{GeV} / \mathrm{c}$ ($=4.15 \mathrm{Gev}$ kin. energy) is 317 mb
$\mathrm{p}+\mathrm{Nb}$ at $\quad 3.5 \mathrm{GeV} \quad 156 \mathrm{mb}$ (interpolation)

HADES - 0.28 pi- per LVL1 event $\mathrm{p}+\mathrm{Nb}$ at 3.5 GeV

- assuming trigger bias ratio from UrQMD = 1.42
$0.28 / 1.42=0.20$ pi- per $\mathrm{p}+\mathrm{Nb}$ reaction
- assuming $\mathrm{p}+\mathrm{Nb}$ reaction cross section 982 mb
R. K. Tripathi, F. A. Cucinotta, J. W. Wilson, Nucl. Instrum. Meth. B117 (1996) 347
pi- cross section $0.20 * 982 \mathrm{mb}=196 \mathrm{mb}$
22\% difference
errors - statistical negligible
- systematic - efficiency $<5 \%$ from sector differences (see phi distribution)
- method <5\% from selfcheck
- normalization to 1 LVL1 event $<5 \%$ from track mult. distribution
- correction on LVL1 bias $\sim 10 \%$ from UrQMD and M3-M2

Comparison to HARP-CDP data - pCu 4.1GeV

HADES data:
$\sigma_{\pi}=M_{\pi} * \sigma_{\text {tot }}$
$\sigma_{\text {tot }}$ - reaction cross section 982 mb
HARP data:
scaled by factor 0.96

Comparison to UrQMD

pCu 4.1 GeV

Figure 2:
pNb 3.5 GeV

Figure 3:

UrQMD predicts different shapes for different systems Qualitatively in agreement with data

Comparison to HARP-CDP data

 - pTa 4.1 GeV

HADES data:
$\sigma_{\pi}=\mathrm{M}_{\pi} * \sigma_{\text {tot }}$
$\sigma_{\text {tot }}$ - reaction cross section 982 mb
HARP data:
scaled by factor 0.48

Normalization to HARP-CDP data

HADES data: $\sigma_{\pi}=\mathrm{M}_{\pi} * \sigma_{\text {tot }}$
$\sigma_{\text {tot }}$ - reaction cross section from scaling of HADES data to HARP pCu data for mom>300 MeV/c where the shapes are the same
Result : $\mathbf{8 8 6} \mathbf{~ m b}$ - difference from the model prediction is $\mathbf{1 2 \%}$

Summary

charged pion production from $\mathrm{p}+\mathrm{Nb}$ at 3.5 GeV was studied
π^{-}multiplicities were scaled to measured cross sections (HARP-CDP)
scaling constant - the total reaction cross section $\sigma_{\text {tot }}=\mathbf{8 8 6} \mathbf{~ m b}$ can be used for recalculation of dilepton multiplicities to cross sections
errors from analysis - statistical negligible

- systematic 10-15\%
error from scaling - fitting error 2.3\%
error of HADES-HARP comparison (differences in p_T shapes, different systems...): (886.-791.)/886. $==0.11==11 \%$ difference between full p_T range and p_T>300MeV/c $(886 .-982) / .886 .==0.12==12 \%$ difference between our result and parametrization model

References

A. Bolshakova et al. HARP-CDP collaboration EPJ C63 (2009) 549-609.
A. Bolshakova et al. HARP-CDP collaboration EPJ C64 (2009) 181-241.
R. K. Tripathi, F. A. Cucinotta, J. W. Wilson, Nucl. Instrum. Meth. B117 (1996) 347
K.Gallmeister, U.Mosel, arXiv:0901.1770 [hep-ex]
http://gibuu.physik.uni-giessen.de/GiBUU/wiki/HarpGallery

Comparison of UrQMD and HSD for pi-

Figure 8: $d \sigma / d \Omega d p$ for different polar angles for π^{-}production in $\mathrm{p}+\mathrm{Nb}$ at $E_{\text {kin }}=$ $3.5 \mathrm{GeV} / \mathrm{c}^{2}$.

Comparison to HARP data for pi+

Analysis - Acceptance and efficiency

theta vs mom for phi=90 deg.
calculated using PLUTO white distribution embedded into real data, includes tracking and PID

"Selfconsistency check" - UrQMD

UrQMD input (emitted) and its reconstruction by analysis

TOF+TOFINO and track multiplicities

TOF+TOFINO and track multiplicities

TOF+TOFINO and track multiplicities

- agreement between data and UrQMD multiplicities not very good better agreement M3 data - M4 UrQMD track multiplicity than for both M3, same for M2
- makes precise correction on LVL1 bias difficult
- quite lot of events with no track. - Non-target interaction? from a comparison with Poisson distribution estimate of 17% and 23% of such events for M3 and M2, respectively, see figures on previous page (difference between expected and real countrate at track mult. 0)
- such numbers used for pion multiplicities calculation
- influences strongly the pion multiplicities

Theta vs phi distributions

Pt vs y distributions

