

History

Huge aperture

- Short length
- Fast ramping
- →High current / low inductance design required

Excerpt from technical parameter list:

Max. Field	Т	±0.05
Min. Field	Т	0
Bending angle	mrad	±2 (@13Tm)
Effective path length, L	m	0.5
Useable horizontal aperture	mm	±200
Useable vertical gap	mm	±200
Vertical pole gap height	mm	440
Integrated field error \DL/BL		$\leq \pm 1\%$
Overall length	m	0.5
Overall width	m	0.56
Overall height	m	0.52
Overall weight	kg	≈280
Current at max. field	A	580.164
Inductance	mH	1.184
Resistance	mOhm	21.854
Max. ramp rate	T/s	0.54
high field flat top	S	80
low field flat top	S	80
cycle length	S	8
average power consumption	kW	7.356
3 - 6th BINP-FAIR-Workshop		27 04 2021 2

GSI Helmholtzzentrum für Schwerionenforschung GmbH

C. Mühle - S1

Studies

- Several design studies by Alexander Kalimov
 - Window frame design
 - Saddle coils
 - Mirror plates or full shield
 - + Lower inductance, thinner yoke, full shield optional
 - Elaborate coil

- Transformer design
 - Race track coils
 - Full shield
 - + Simple coil
 - Higher inductance, thicker yoke, full shield mandatory

GSI Helmholtzzentrum für Schwerionenforschung GmbH

C. Mühle - S13 - 6th BINP-FAIR-Workshop

BINP study

- Based on Kalimov's transformer design
 - Works in principle
 - Tolerances on spacers between turns critical
 - Alignment bridges at load limit, movement to small
 - Aperture slightly reduced -> enlarged aperture would need higher current

C. Mühle - S13 - 6th BINP-FAIR-Workshop

4

Critical re-check of parameters at GSI

- Fast ramping is not needed in beam lines where S13 is used
 - No ramping \rightarrow Low current / high inductance design feasible
- Most parameters of CR/pbar-steering magnet fit to S13 requirements
 - Would be a time and cost effective solution.
 - But field integral is only 80% of S13 → Max. steering angle reduced from 2mrad to 1.6mrad.
 - \rightarrow This drawback can be accepted.

Installation spaces

- Checked by Ludwig Heyl
 - → No problem at all 5 positions.

GSI Helmholtzzentrum für Schwerionenforschung GmbH

C. Mühle - S13 - 6th BINP-FAIR-Workshop

27.04.2021

6

Conclusion

- Replacement of S13 by CR/pbar-steering magnet is a feasible solution.
- It is expected to be time and cost effective.
- Power supply should be changed accordingly.
- Engineering change request must be prepared.