Measurements of $\binom{3}{\Lambda}H, \frac{4}{\Lambda}H$ (*dN/dy*, $c\tau$, v_1) from 3 GeV Au+Au collisions with the STAR detector

Yue-Hang Leung

Lawrence Berkeley National Laboratory

<u>Outline</u>

- Introduction
- Hypernuclei Lifetime
- Hypernuclei yields
- Hypernuclei v₁
- Summary and Outlook

REIMEI-THEIA Webseminar 22-04-2021

Supported in part by:

Introduction

- <u>Hypernuclei -> experimental probe to study the</u> <u>hyperon-nucleon (YN) interaction</u>
 - Modeling the EOS of astrophysical objects
 - Lifetime, branching ratios, and binding energy measurements provide key information to understand the YN potential
- ${}^{3}_{\Lambda}$ H (Λpn) is the lightest hypernuclei
 - Binding energy~0.4 MeV

STAR

 Theory predicts lifetime close to the free lambda lifetime

- Few measurements of ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$ in heavy-ion collisions
 - Yield and flow -> insight on the production mechanisms and hyperon contribution to the EoS

STAR BES-II

- Higher baryon density at lower beam energies
 - STAR BES-II -> great opportunity to study hypernuclei production

STAR Fixed-target Experiment Setup

STAR

STAR fixed target mode

Particle identification

- Main detector used for the analysis is Time Projection Chamber (TPC)
 - Track reconstruction
 - Provides high quality dE/dx measurement for particle identification

KFParticle finder

- Kalman Filter based reconstruction
- All particles (mother and daughter) described by state vectors and covariance matrix

Covariance matrix contains essential information about tracking and detector performance

• Higher significance compared to traditional (helix swimming) method

KF Particle Finder — M. Zyzak, "Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR," Dissertation thesis, Goethe University of Frankfurt, 2016, http:// publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/41428

Hypernuclei reconstruction and acceptance

*M. Zyzak, "Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR", thesis, urn:nbn:de:hebis:30:3-414288

STR (3)

STAR

Lifetime analysis

- 1. Measure the signal counts as a function of $L/\beta\gamma$
 - Background estimated by rotating pion tracks

 $L/\beta\gamma = ct$ L: decay length t: proper time

Lifetime analysis (cont.)

- 2. Correct for efficiency as a function of $L/\beta\gamma$
 - GEANT3 simulations: simulated hypernuclei embedded into real data
 - Apply weighting to simulations to describe
 p_T and rapidity
 distributions in real data

 Distributions of topological variables/ nhits described by our simulations

 Efficiency obtained by ratio of reconstructed particles to input particles

• 3. Fit with an exponential to extract the lifetime $N(t) = N_0 e^{-t/\tau} = N_0 e^{-L/\beta\gamma c\tau}$

Lifetime analysis (cont.)

• Yields of Λ , ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$ as a function of $L/\beta\gamma$

- Well described by exponential functions $N(t) = N_0 e^{-L/\beta\gamma c\tau}$
- Lifetime extracted with χ^2 fit

STAR

• Extracted A lifetime $(265.0 \pm 2.2)[ps]$ consistent with PDG value $(263.1 \pm 2.0)[ps]$

Lambda lifetime crosscheck

• We extract $dN/d(L/\beta\gamma)$ in different rapidity slices for Λ

Analysis procedure is robust using different regions of the detector

Systematic uncertainties on the lifetime

- (1) Analysis cuts
 - Imperfect description of topological variables between simulations and real data
- (2) Input MC p_T/rapidity/lifetime
 - Imperfect knowledge in the real kinematic distributions of the hypernuclei
- (3) Single track efficiency
 - Mismatch of single track efficiency between simulations and data
- (4) Signal extraction
 - Uncertainties related to the background subtraction technique

syst. uncertainty	$^{3}_{\Lambda}\mathrm{H}$	$^4_{\Lambda}{ m H}$
Analysis cuts	9.7%	5.0%
Input MC	9.1%	1.3%
Tracking efficiency	7.7%	1.1%
Signal extraction	3.8%	0.9%
Total	15.8%	5.4%

<u>Table: Syst. uncertainty for ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ lifetime</u>

Systematic uncertainties: input weighting

dN_{raw}/dp_[c/GeV]

800

700

600

500

400

Data

T=240MeV T=280MeV

T=200MeV

- Efficiency as a function of $L/\beta\gamma$ depends on weighting applied to the simulations
 - Systematic uncertainties assigned by varying the weighting function used

New results on ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ lifetime

- ${}^{4}_{\Lambda}$ H :
 - Most precise measurement to date.
 - Consistent with previous measurements.

 Consistent with theoretical calculations including pion FSI.

> NC46(1966)786 (Dalitz et al) JPG NPP 18(1992)339 (Congleton) PRC57(1998)1595 (Kamada et al) PLB791(2019)48 (Gal et al)

$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H pT spectra

15

Systematic uncertainties on the spectra

- Additional sources of systematic uncertainties considered:
- <u>Extrapolation</u>
 - Different functions for extrapolation to estimate uncertainty
 - m_T exponential, blast wave, Boltzmann, etc.
- <u>Target material</u>
 - Took into account possible Coulomb dissociation when traversing target material

Physics of Atomic Nuclei, 2007, Vol. 70, No. 9, pp. 1617–1622

 Survival probability >95% in kinematic regions analyzed

*Target thickness = 0.25mm

syst. uncertainty	$^{3}_{\Lambda}\mathrm{H}$	$^4_{\Lambda}{ m H}$
Analysis cuts	19.3%	4.1%
Input MC	10.0%	4.0%
Tracking efficiency	3.7%	2.9%
Signal extraction	6.0%	4.0%
Extrapolation	11.8%	12.8%
Detector material	4.0%	< 1%
Total	26.0%	14.9%
Branching ratio	40.0%	20.0%

Systematic uncertainties: Extrapolation

 Use different functions for extrapolation to estimate systematic uncertainty

Systematic uncertainties: Coulomb dissociation

- Hypernuclei may experience coulomb dissociation when traversing target material *Target thickness = 0.25mm
- <u>Coulomb dissociation of weakly</u> <u>bound relativistic (hyper)nuclei</u> <u>within two cluster model</u>

$$\sigma = \frac{\pi}{3} (Z\alpha)^2 z^2 \frac{m_2}{v^2 M m_1 \epsilon_{\text{bin}}} \left[\ln \left(\frac{8\gamma^2 v^2 M m_1}{m_2 \epsilon_{\text{bin}}} \right) - (2A - C) - v^2 - \Delta B(Z) \right].$$
(21)

Here, $2A - C \approx 2.12$; the quantity $\Delta B(Z)$ is determined according to Eq. (8).

Z: charge of target
m₂: mass of lambda
m₁: mass of deuteron/triton
M: mass of hypernuclei
e_{bin}: binding energy
v: velocity of hypernuclei
ΔB(Z): correction term connected

with the finite size of the target nucleus

ISSN 1063-7788, Physics of Atomic Nuclei, 2007, Vol. 70, No. 9, pp. 1617–1622. c Pleiades Publishing, Ltd., 2 https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/054/22054069.pdf?r=1

• Probability to survive length d of material $P(d) = exp(-\sigma * n * d)$

n: atomic density (5.90×10²⁸ m⁻³ for Au)

Systematic uncertainties: Coulomb dissociation

- Dissociation xsection -> depends on momentum
- Traversed length -> depends on direction + collision vertex
- We use a MC to calculate this effect as a function of momentum and rapidity

- Survival probability > 95% for y > -0.8
- Dissociation effect is negligible for ${}^4_{\Lambda}H$

Systematic uncertainties: Coulomb dissociation

- Dissociation cross section depends on the binding energy of hypertriton: 0.11 ± 0.05 MeV
 NPB1(1967) NPB4(1968) PRD(1970)
- Correction applied as a function of rapidity and momentum
 - Uncertainties due to precision in binding energy of $^{3}_{\Lambda}$ H

NPB52(1973)

Nature Phys<u>ics 16 (2020) 409</u>

$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H dN/dy at $\sqrt{s_{NN}} = 3$ GeV

• First measurement of dN/dy of hypernuclei in HI collisions

• Different trends in the ${}^4_{\Lambda}H$ rapidity distribution in central (0-10%) and mid-central (10-50%) collisions

PRC57(1998)1595 NPA585(1995) 365c NPA639(1998) 251c

Light nuclei dN/dy at 3 GeV

- ⁴He spectra at 3 GeV
 - Softening of spectra from mid-rapidity to target rapidity
 - dN/dy show centrality dependence
 - Qualitatively similar to ${}^4_{\Lambda}H$

Au+Au Collisions FXT $\sqrt{s_{NN}} = 3 \text{ GeV}$ • 0-10% A 20-40% = 10-20% + 40-80%

Yue Hang Leung - REIMEI-THEIA Webseminar

$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H |y|<0.5 yield vs beam energy

 Thermal model (GSI-Heidelberg) which adopts the canonical ensemble, describes ³_AH yield at 3 GeV

STRONG

STAR

• Yield of ${}^{4}_{\Lambda}H$ not described by coalescence (DCM) model

PLB714(2012),85 (Hybrid URQMD, Coalescence(DCM))

PLB 697 (2011)203 (Thermal Model)

PLB 754 (2016)360 (ALICE)

Directed flow of hypernuclei $~^3_{\Lambda H}$ and $~^4_{\Lambda H}$

- Anisotropic flow commonly used for studying the properties of matter created in high energy nuclear collisions
 - Sensitive to early stage of system evolution

$$\frac{dN}{d\phi} \sim 1 + \sum_{n=1}^{\inf} 2v_n \cos(n(\phi - \Psi))$$

 Directed flow v₁ generated during the nuclear passage time, probes the earliest stage of the collision

$$v_1 = \langle cos(\phi - \Psi) \rangle$$

Directed flow of hypernuclei $~^3_{\Lambda H}$ and $~^4_{\Lambda H}$

- We use the event plane method to extract the v_1 of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$
 - 1st order event plane angle measured by Event Plane
 Detector (EPD) (-5.3 < η < -2.6)
 - Event plane resolution R₁ from 3-sub-event method

1.0

0.8

0.6

0.4

0.2

0.0

0

Event Plane Resolution

STAR Au+Au Collision 3 GeV

20

40

Collision Centrality (%)

● R₁

60

80

Directed flow of hypernuclei ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$

- First observation of hypernuclei collectivity v_1 in HI collisions.
- v_1 slope follow baryon number scaling in 5-40% 3 GeV Au+Au collisions
 - Results consistent with hypernuclei production from coalescence of hyperons and nucleons

Summary 1

- First measurement of hypernuclei dN/dy in HI collisions
 - Different trends in the $^4_{\Lambda}H$ rapidity distribution in central (0-10%) and mid-central (10-50%) 3 GeV Au+Au collisions
 - Thermal model describes ${}^3_{\Lambda}H$ yield, while coalescence (DCM) model does not describe ${}^4_{\Lambda}H$ yield.
- First observation of hypernuclei collectivity v₁ in HI collisions
 - v_1 slope of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ follow baryon number scaling in 5-40% collisions.
- Improved precision on ${}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$ lifetimes

Outlook: Energy dependence

STAR	$\sqrt{s_{\rm NN}}$	Beam E	# of Good Events
2017	54.4		1350 M
	27		1550 M
2018	7.2	26.5 (FXT)	155 M
	3.0	3.85 (FXT)	258 M
	19.6		582 M
	14.6		324 M
2019	7.7	31.2 (FXT)	50.6 M
	3.9	7.3 (FXT)	52.7 M
	3.2	4.59 (FXT)	200 M
	11.5		235 M
	9.2		58 M
	7.7	31.2 (FXT)	112 M
	6.2	19.5 (FXT)	118 M
2020	5.2	13.5 (FXT)	103 M
	4.8	11.5 (FXT)	235 M
	4.5	9.8 (FXT)	108 M
	3.9	7.3 (FXT)	117 M
	3.5	5.75 (FXT)	116 M

- High statistics runs covering 3.0 - 54.4 GeV
 - Study energy dependence of hypernuclei production
 - 2019 onwards: iTPC + eTOF
 - Improve low momentum reach

Outlook: Heavier hypernuclei

<u>3 GeV, 2018</u>

- High quality dE/dx measurement from TPC
- At 3 GeV, heavy fragments up to ⁷Be are seen
 - Opportunity to study heavier hypernuclei

From Maksym Zyzak, Iouri Vassiliev et al.

Outlook: Discovery potential for double- Λ hypernuclei

- Access $\Lambda\Lambda$ interaction through double- Λ hypernuclei
- Search for ${}^{5}_{\Lambda\Lambda}H$

 ${}^{5}_{\Lambda\Lambda}H \rightarrow {}^{5}_{\Lambda}He + \pi^{-} \rightarrow {}^{4}He + p + \pi^{-} + \pi^{-}$

- Fast MC study in ideal STAR conditions:
 - 2B events at 3 GeV
 - Ideal iTPC conditions
 - Yields based on thermal model

gives an estimate of ~27 counts

"Nagara" event

E373, PRL 87(2001)212502

• Search for ${}^{4}_{\Lambda\Lambda}H$

STAF

Existence under debate due to low binding energy

Summary 2

- BES-II + FXT : $\sqrt{s_{NN}} = 3 20$ GeV
 - Energy dependence, heavier hypernuclei, S=2 hypernuclei
 - Binding energy, particle ratios, etc.

Moving towards a quantitative understanding of QCD matter in the high baryon density region

STAR

Phys.Lett. B744 (2015) 352-357

Particle ratios

Thank you for listening!

Backup slides follow

Primary vertex in 3 GeV collisions

