Decay Pion Spectroscopy of Double-Λ Hypernuclei at J-PARC

Hiroyuki Fujioka (Tokyo Institute of Technology)

Hypernuclei with S = -2

Double Λ Hypernuclei are formed by $\Xi^- p \rightarrow \Lambda \Lambda$ conversion in nuclei, where a Ξ^- hyperon is produced in the $p(K^-, K^+)\Xi^-$ reaction.

Tokvo Institute of Technoloav

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

ΛΛ, ΞΝ interaction

K. Sasaki et al. (HAL-QCD Collaboration) NPA 998 (2020) 121737

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Study of EN, $\Lambda\Lambda$ interaction

ALICE, PRL 123, 112002 (2019) ALICE, PLB 797, 134822 (2019) Ahn et al., PLB 633, 214 (2006)

E Hypernuclei

Double-A Hypernuclei

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Nagara event

captured from an atomic orbital of ¹²C $\Xi^{-} + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$ ${}^{6}_{\Lambda\Lambda}He \rightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$ $B_{\Lambda\Lambda} = 6.79 + 0.91B_{\Xi^{-}} \pm 0.16 \text{ MeV}$ $\Delta B_{\Lambda\Lambda} = 0.55 + 0.91B_{\Xi^{-}} \pm 0.17 \text{ MeV}$ ²C from *P* Assumption: $B_{\Xi^{-}}(3D) = 0.13 \text{ MeV}$

tials. Moreover, the Ξ^- capture probability in ¹²C from *P* states is a few percent at most. The most likely capture in ¹²C, as discussed in Sec. III B, occurs from atomic *D* states.

C. J. Batty, E. Friedman, and A. Gal, Phys. Rev. C **59**, 295 (1999)

 $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \,\mathrm{MeV}$

 $B_{\Lambda\Lambda} = 6.91 \pm 0.16 \,{\rm MeV}$

H. Takahashi et al., Phys. Rev. Lett. **87**, 212502 (2001); J.K. Ahn et al., Phys. Rev. C **88**, 014003 (2013)

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

125 system

arXiv:2103.08793

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

System

T. Koike, JPS Conf. Proc. 17, 033011 (2017)

7/34

Tokyo Institute of Technology

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

A possible scenario

If a Ξ hyperon was absorbed at a deeper level,

$B_{\Lambda\Lambda}$ and $\Delta B_{\Lambda\Lambda}$ might have been underestimated by an order of 1 MeV

Table 1Current $B_{\Lambda\Lambda}$ and $\Delta B_{\Lambda\Lambda}$ data for double- Λ hypernuclear events^a

		Ξ ⁻ hyperon	$B_{\Lambda\Lambda}$	$\Delta B_{\Lambda\Lambda}$	
Event	$A_{\Lambda\Lambda}Z$	captured by	(MeV)	(MeV)	Comments
Nagara (33)	$^{6}_{\Lambda\Lambda}$ He	$\Xi^{-} + {}^{12}\mathrm{C} (3D)$	6.91 ± 0.16	0.67 ± 0.17	$B_{\Lambda\Lambda} = 6.79 + 0.91 B_{\Xi^-}(\pm 0.16)$
					$\Delta B_{\Lambda\Lambda} = 0.55 + 0.91 B_{\Xi^-}(\pm 0.17)$
Danysz et al. (45)	$^{10}_{\Lambda\Lambda}$ Be	$\Xi^{-} + {}^{12}C(-)$	14.7 ± 0.4	1.3 ± 0.4	${}^{10}_{\Lambda\Lambda}\text{Be} \rightarrow {}^{9}_{\Lambda}\text{Be}^* + p + \pi^-$
E176	$^{10}_{\Lambda\Lambda}$ Be	$\Xi^{-} + {}^{14}N(3D)$	23.3 ± 0.7	0.6 ± 0.8	$^{13}_{\Lambda\Lambda}B \rightarrow ^{13}_{\Lambda}C^* + \pi^-$
Demachi-Yanagi (33)	$^{10}_{\Lambda\Lambda}$ Be*	$\Xi^{-} + {}^{12}C(3D)$	11.90 ± 0.13	-1.52 ± 0.15	By Danysz et al.
					$E_x \sim 2.8 \text{ MeV}$
Hida (33)	$^{12}_{\Lambda\Lambda}$ Be	$\Xi^{-} + {}^{14}N(3D)$	22.48 ± 1.21		
	$^{11}_{\Lambda\Lambda}$ Be	$\Xi^{-} + {}^{16}O(3D)$	20.83 ± 1.27	2.61 ± 1.34	
Mikage (33)	$^{6}_{\Lambda\Lambda}$ He	$\Xi^{-} + {}^{12}\mathrm{C} (3D)$	10.01 ± 1.71	3.77 ± 1.71	${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{3}_{\Lambda}\text{H} + p + 2n$
	$11 \\ \Lambda \Lambda Be$	$\Xi^{-} + {}^{12}\mathrm{C} (3D)$	22.15 ± 2.94	3.95 ± 3.00	
	$\frac{11}{\Lambda\Lambda}$ Be	$\Xi^{-} + {}^{14}N(3D)$	23.05 ± 2.59	4.85 ± 2.63	$ ^{11}_{\Lambda\Lambda} \text{Be} \to {}^{9}_{\Lambda} \text{Li} + p + n $

^aBecause the data were obtained with kinematics including the production process, B_{Ξ^-} values are assumed for each capture nuclei at the 3D level, except for the Danysz et al. data (50), which were independent of B_{Ξ^-} because the the analysis was made only on the decay process. For the Demachi–Yanagi event, if 2.8 MeV is used as the excitation energy (E_x) of ${}^{10}_{\Lambda\Lambda}$ Be^{*}, then the $B_{\Lambda\Lambda}$ and $\Delta B_{\Lambda\Lambda}$ data agree well with the Danysz et al. data. Note that the value of 2.8 MeV is similar to the value of 3.05 MeV for the E_x of the ${}^{9}_{\Lambda}$ Be nucleus. Regarding the case of the ${}^{12}_{\Lambda\Lambda}$ Be of the Hida event, the $\Delta B_{\Lambda\Lambda}$ value was not obtained, because there are no data for the B_{Λ} value of the ${}^{11}_{\Lambda\Lambda}$ Be nucleus.

K. Nakazawa and E. Hiyama, Annu. Rev. Nucl. Part. Sci. 68, 131 (2018)

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Projects in GSI/FAIR and HIAF

Heavy-ion collision

9/3

GSĬ

ECAL

@ 2024

Tokyo Institute of Technology

TRD

RICH

Proposal for J-PARC 50 GeV Synchrotron

Decay Pion Spectroscopy of ${}^{5}_{\Lambda\Lambda}$ H Produced by Ξ -hypernuclear Decay

Hiroyuki Fujioka¹*, Tomokazu Fukuda^{2,3†}, Toshiyuki Gogami⁴, Emiko Hiyama^{5,3‡}, Yuhei Morino⁶, Toshio Motoba^{2,7}, Tomofumi Nagae⁴, Sho Nagao⁸, Toshiyuki Takahashi⁶, Atsushi O. Tokiyasu⁹

¹ Department of Physics, Tokyo Institute of Technology
 ² Osaka Electro-Communication University
 ³ RIKEN Nishina Center
 ⁴ Department of Physics, Kyoto University

⁵ Department of Physics, Kyushu University

⁶ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization

⁷ Yukawa Institute for Theoretical Physics, Kyoto University

⁸ Institute for Excellence in Higher Education, Tohoku University

⁹ Research Center for Electron Photon Science (ELPH), Tohoku University

December 14, 2018

http://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P75_2019-09.pdf

10/3

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Stage-1 approved

Phase-1 of the P75 experiment: Measurement of the formation cross section of ${}_{\Xi}^{7}$ H in the 7 Li(K^{-} , K^{+}) reaction

Shuhei Ajimura¹, Hiroyuki Fujioka^{2*}, Tomokazu Fukuda^{3,4†}, Toshiyuki Gogami⁵, Emiko Hiyama^{6,4‡}, Yuhei Morino⁷, Toshio Motoba^{3,8}, Tomofumi Nagae⁵, Sho Nagao⁹, Akane Sakaue⁵, Toshiyuki Takahashi⁷, Yosuke Taki², Atsushi O. Tokiyasu¹⁰, Makoto Uchida², Masaru Yosoi¹

¹ Research Center for Nuclear Physics (RCNP), Osaka University
 ² Department of Physics, Tokyo Institute of Technology
 ³ Osaka Electro-Communication University

⁴ RIKEN Nishina Center

⁵ Department of Physics, Kyoto University

⁶ Department of Physics, Kyushu University

⁷ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization

⁸ Yukawa Institute for Theoretical Physics, Kyoto University

⁹ Department of Physics, Tohoku University

¹⁰ Research Center for Electron Photon Science (ELPH), Tohoku University

December 9, 2019

11/3

http://j-parc.jp/researcher/Hadron/en/pac_2001/pdf/P75_2020-02.pdf

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

s-shell nuclei

s-shell single-A hypernuclei

s-shell double-A hypernuclei

(as of March 2021)

NAGARA Event

H. Takahashi et al., Phys. Rev. Lett. **87**, 212502 (2001); J.K. Ahn et al., Phys. Rev. C **88**, 014003 (2013)

s-shell double-A hypernuclei

(expectation)

Tokyo Institute of Technology

ANHO ANHO

31

15T

13 11 ANH

15/34

Many theoretical calculations supports the existence of the A = 5 isodoublet $\begin{pmatrix} 5 \\ \Lambda\Lambda \end{pmatrix} H^{-}_{\Lambda\Lambda} He$.

L. Contessi et al., Phys. Lett. B **797**, 134893 (2019) G. Meher and U. Raha, Phys. Rev. C **103**, 014001 (2021) and references therein

J-PARC E75 Experiment

will investigate $^{5}_{\Lambda\Lambda}$ H.

https://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P75_2019-09.pdf

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Why is ${}_{\Lambda\Lambda}^{5}$ H special? (1)

Table 1

Λ separation energies $B_{\Lambda}({}_{\Lambda\Lambda}{}^{A}Z)$ for A = 3-6, calculated using $a_{\Lambda\Lambda} = -0.8$ fm, cutoff $\lambda = 4$ fm⁻¹ and the Alexander[B] ΛN interaction model [24]. In each row a $\Lambda\Lambda N$ LEC was fitted to the underlined binding energy constraint.

Constraint (MeV)	$^{3}_{\Lambda\Lambda}n$	$^{4}_{\Lambda\Lambda}n$	$^{4}_{\Lambda\Lambda}$ H	$^{5}_{\Lambda\Lambda}$ H	$^{6}_{\Lambda\Lambda}$ He	
$\Delta B_{\Lambda\Lambda} ({}^{6}_{\Lambda\Lambda} \text{He}) = \underline{0.67}$	_	_	_	1.21	3.28	NAGARA
$B_{\Lambda}({}^{4}_{\Lambda\Lambda}\mathrm{H}) = \underline{0.05}$	-	-	0.05	2.28	4.76	
$B({}^{4}_{\Lambda\Lambda}n) = \underline{0.10}$	-	0.10	0.86	4.89	7.89	
$B({}^{3}_{\Lambda\Lambda}n) = \underline{0.10}$	0.10	15.15	18.40	22.13	25.66	

L. Contessi et al., Phys. Lett. B 797, 134893 (2019)

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

$\Lambda\Lambda$ -EN int. and $\Delta B_{\Lambda\Lambda}$, E mixing

the $\Lambda\Lambda$ interaction as deduced from $B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$, we have argued that the $\Lambda\Lambda$ - ΞN coupling effect should not exceed 0.2 MeV in ${}^{6}_{\Lambda\Lambda}$ He, and a similar order of magnitude is expected for this and other medium effects in the A=5 $\Lambda\Lambda$ hypernuclei. For comparison with the better studied S=-1

Tokyo Institute of Technology

I.N. Filikhin, A. Gal, and V.M. Suslov, Phys. Rev. C 68, 024002 (2003)

19/3

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Short summary for physics motivation

- In the s-shell region of double- Λ hypernuclei, only ${}^{6}_{\Lambda\Lambda}$ He has been discovered in a nuclear-emulsion experiment.
 - The ΛΛ bond energy (ΔB_{ΛΛ}) may be larger, if the assumption "Ξ- was captured at the atomic 3D level" in the analysis of the NAGARA event is not valid. A cross-check with different experiments is necessary!
- The **lightest double-** Λ **hypernucleus**, probably ${}_{\Lambda\Lambda}{}^{5}H{}_{-\Lambda\Lambda}{}^{5}He$, is yet to be discovered up to now.
- The comparison between ${}^{6}_{\Lambda\Lambda}$ He and ${}^{5}_{\Lambda\Lambda}$ H- ${}^{5}_{\Lambda\Lambda}$ He will reveal the effect of $\Lambda\Lambda$ - Ξ N mixing in light double- Λ hypernuclear systems.

s-shell double-A hypernuclei

(expectation)

Tokyo Institute of Technology

ANHO ANHO

31

 Λ^{5}_{Λ}

13 14 H

21/34

Many theoretical calculations supports the existence of the A = 5 isodoublet $\begin{pmatrix} 5 \\ \Lambda\Lambda \end{pmatrix} H^{-}_{\Lambda\Lambda} He$.

L. Contessi et al., Phys. Lett. B **797**, 134893 (2019) G. Meher and U. Raha, Phys. Rev. C **103**, 014001 (2021) and references therein

J-PARC E75 Experiment

will investigate $^{5}_{\Lambda\Lambda}$ H.

https://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P75_2019-09.pdf

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Novelty in the E75 experiment

- The (hybrid-)emulsion method has been adopted since the discovery of double-Λ hypernuclei in 1960's.
 - ► Many kinds of double- Λ hypernuclei, including ${}_{\Lambda\Lambda}^{6}$ He, have been reported.
- The J-PARC E75 experiment will NOT use a nuclear emulsion, hence a so-called counter experiment.
 - ► Nuclear target: 7Li

• ${}^{5}_{\Lambda\Lambda}H$ and ${}^{4}_{\Lambda}H$ will be exclusively produced

Comparison

 $^{7}\text{Li}(K^{-},K^{+})_{\Xi}^{7}\text{H}$

23/

 $_{\Xi}^{7}H \rightarrow {}_{\Lambda\Lambda}^{5}H + 2n$

okvo Institute of

J-PARC E75 experiment

- 1) Production of Ξ hypernuclei:
- 2) Strong decay of Ξ hypernuclei:
- 3) Weak decay of double- Λ hypernuclei: ${}_{\Lambda\Lambda}{}^{5}H \rightarrow {}_{\Lambda}{}^{5}He + \pi^{-}$

Production of ${}_{\Xi}^{7}$ H

E75 Phase-1 Proposal https://j-parc.jp/researcher/Hadron/en/pac_2001/pdf/P75_2020-02.pdf

E. Hiyama and T. Koike, private communication

<u>2</u>4/

Tokyo Institute of Technology

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Decay Pion Spectroscopy of Double-A Hypernuclei at J-PARC

25/34 東京工業大学

Production and Decay of ${}_{\Lambda\Lambda}{}^{5}\mathrm{H}$

ANHO ANHO

3F)

1.54

3 ANH

Mass of ${}_{\Lambda\Lambda}{}^{5}H$ will be determined (decay pion spectroscopy)

 $p_{\pi^{-}} \approx 132 - 135 \,\mathrm{MeV/c}$ $\int_{\Lambda}^{5} \mathrm{H} \rightarrow \int_{\Lambda}^{5} \mathrm{He} + \pi^{-}$

 $^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-}$

 $p_{\pi^-} \approx 132.9 \,\mathrm{MeV}/c$

Tag of a fast proton from NMWD of ${}^{5}_{\Lambda}$ He \Rightarrow distinction between ${}^{5}_{\Lambda\Lambda}$ H and ${}^{4}_{\Lambda}$ H Hiroyuki Fujioka (<u>fujioka@phys.titech.ac.jp</u>) Decay Pion Spectroscopy of Double- Λ Hypernuclei at J-PARC 26/34 (意义) Logical Logical Constitute of Technology

Momentum of decay pions

27/34

Tokyo Institute of Technology

Y. Yamamoto, M. Wakai, T. Motoba and T. Fukuda, Nucl. Phys. A 625, 107 (1997)

Hiroyuki Fujioka (<u>fujioka@phys.titech.ac.jp</u>)

Decay Pion Spectroscopy

Tokyo Institute of Technology

Experimental Setup

$^{7}\text{Li}(K^{-}, K^{+})_{\Xi^{-}}^{7}\text{H}$ (missing-mass spectroscopy) K1.8 + "S-2S" (common to E70 Exp.)

T. Nagae THEIA-REIMEI seminar (18/Nov/2020)

Tokvo Institute of Technology

 $^{5}_{\Lambda\Lambda}H \rightarrow ^{5}_{\Lambda}He + \pi^{-}$ (decay pion spectroscopy) Cylindrical Detector System <u>solenoid magnet + TPC</u> + ...

29/3

Superconducting solenoid

Time Projection Chamber

- Integrity assessment in Oct.-Nov. 2019
 We observed analog signals from every sense wire.
- The TPC was moved to TokyoTech in Nov. 2020.
- To-do: R&D of the readout system for the TPC

supported by Joint Usage/Research Programs of RCNP

Tokvo Institute of Technology

31/3

Hiroyuki Fujioka (<u>fujioka@phys.titech.ac.jp</u>)

Future plans

Decay Pion Spectroscopy for ${}^{6}_{\Lambda\Lambda}$ He ${}^{6}_{\Lambda\Lambda}$ He ${}^{6}_{\Lambda}$ Li* + $\pi^{-} {}^{5}_{\Lambda}$ He + $p + \pi^{-}$ ${}^{6}_{\Lambda\Lambda}$ He ${}^{6}_{\Lambda}$ Li* + $\pi^{-} {}^{5}_{\Lambda}$ He + $p + \pi^{-}$ ${}^{9}_{U}$

At least tens of events are necessary

• Theory:
$$\Gamma \begin{pmatrix} 5 \\ \Lambda \Lambda \end{pmatrix} = 1.30\Gamma_{\Lambda}$$
, $\Gamma \begin{pmatrix} 6 \\ \Lambda \Lambda \end{pmatrix} = 0.96\Gamma_{\Lambda}$

Y. Yamamoto, M. Wakai, T. Motoba and T. Fukuda, Nucl. Phys. A 625, 107 (1997) Hiroyuki Fujioka (<u>fujioka@phys.titech.ac.jp</u>) Decay Pion Spectroscopy of Double-Λ Hypernuclei at J-PARC Decay Pion Spectroscopy of Double-Λ Hypernuclei at J-PARC

Weak decay of double-A hypernuclei

Table 7

Calculated pionic decay rates of light double- Λ hypernuclei to be produced in the (K^-, K^+) reaction on ⁹Be. The calculations are made for the two-body and three-body final states. DW denotes the use of pion distorted waves described in the text. All decay rates are given in units of the free- Λ decay rate Γ_{Λ}

		π^- DW		π^0 DW
4H	$\Rightarrow {}^{4}_{4}\text{He} + \pi^{-}$	0.25	$\Rightarrow {}^{4}_{A}\mathrm{H} + \pi^{0}$	0.13
	$\implies \frac{3}{4}\mathrm{H} + p + \pi^{-}$	0.52	$\implies \frac{3}{4}\mathrm{H} + n + \pi^0$	0.28
5 ⁵ H	$\implies {}^{5}_{\Lambda}\text{He} + \pi^{-}$	0.38	\implies (No 2-body)	-
	$\Rightarrow {}^{4}_{A}\mathrm{H} + p + \pi^{-}$	0.61	$\implies {}^4_A\mathrm{H} + n + \pi^0$	0.31
$^{5}_{44}$ He	\implies (No 2-body)	***	$\Rightarrow {}^{5}_{4}\text{He} + \pi^{0}$	0.18
	$\Rightarrow {}^{4}_{A}\text{He} + p + \pi^{-}$	0.48	$\Rightarrow \frac{4}{4}$ He+n + π^0	0.22
⁶ He	\implies (No 2-body)	-	$\implies {}^6_A \text{He} + \pi^0$	0.23
	$\implies {}^{5}_{A}\text{He} + p + \pi^{-}$	0.60	$\implies {}^{5}_{\Lambda}\text{He} + n + \pi^{0}$	0.13
⁷ ₄₄ He	$\implies {}^{7}_{4}\text{Li} + \pi^{-}$	0.26	$\implies {}^{7}_{4}\text{He} + \pi^{0}$	0.22
	$\Rightarrow {}^{5}_{A}\text{He} + d + \pi^{-}$	0.06	$\Rightarrow {}^{6}_{\Lambda}\text{He} + n + \pi^{0}$	0.03
	$\implies {}^6_{\Lambda}\text{He} + p + \pi^-$	0.21		

No experimental information so far...

We may be able to investigate the weak decay of ${}_{\Lambda\Lambda}{}^{5}H$ in future ...?

The first step: lifetime measurement

Y. Yamamoto, M. Wakai, T. Motoba and T. Fukuda, Nucl. Phys. A 625, 107 (1997)

cf. single-A hypernuclei

A. Gal E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 83, 035004 (2016).

TABLE X.	Measured total pionic decay widths of selected hyper	r-
nuclei in uni	s of $\Gamma_{\Lambda}^{\text{free}}$.	

$^{A}_{\Lambda}\mathrm{Z}$	$\Gamma_{\pi^{-}}$	Γ_{π^0}	Reference
⁴ He	0.289 ± 0.039	0.604 ± 0.073	Parker et al. (2007)
⁵ _A He	0.340 ± 0.016	0.201 ± 0.011	Kameoka <i>et al.</i> (2005), Okada <i>et al.</i> (2005)
$^{12}_{\Lambda}\text{C}$	0.123 ± 0.015	0.165 ± 0.008	Kameoka <i>et al.</i> (2005), Okada <i>et al.</i> (2005)
²⁸ Si	0.046 ± 0.011		Sato et al. (2005)
Fe	$\leq 0.015 \; (90\% \; \text{CL})$		Sato et al. (2005)

TABLE XIII. Measured and calculated NMWD widths and related entities for selected hypernuclei in units of $\Gamma_{\Lambda}^{\text{free}}$.

33/

Entity	Method	$^{5}_{\Lambda}$ He	$^{12}_{\Lambda}\text{C}$
$\overline{\Gamma_n/\Gamma_p}$	Emulsion (_A B, _A C, _A N) (Montwill <i>et al.</i> , 1974) KEK-E462/E508 (Kang <i>et al.</i> , 2006; Kim <i>et al.</i> , 2006) OME + $2\pi + 2\pi/\sigma$ (Chumillas <i>et al.</i> , 2007) OME + $2\pi/\sigma + a_1$ (Itonaga <i>et al.</i> , 2008; Itonaga and Motoba, 2010)	$\begin{array}{c} 0.45 \pm 0.11 \pm 0.03 \\ 0.415 \\ 0.508 \end{array}$	$\begin{array}{c} 0.59 \pm 0.15 \\ 0.51 \pm 0.13 \pm 0.05 \\ 0.366 \\ 0.418 \end{array}$
Γ_{nm}	KEK-E462/E508 (Okada <i>et al.</i> , 2004) OME + $2\pi + 2\pi/\sigma$ (Chumillas <i>et al.</i> , 2007) OME + $2\pi/\sigma + a_1$ (Itonaga <i>et al.</i> , 2008; Itonaga and Motoba, 2010)	$\begin{array}{c} 0.406 \pm 0.020 \\ 0.388 \\ 0.358 \end{array}$	$\begin{array}{c} 0.953 \pm 0.032 \\ 0.722 \\ 0.758 \end{array}$
Γ_{Λ}	KEK-E462/E508 (Kameoka et al., 2005)	0.947 ± 0.038	1.242 ± 0.042
a_{Λ}	KEK-E462/E508 (Maruta <i>et al.</i> , 2007) OME (Chumillas <i>et al.</i> , 2007, 2008) With final-state interactions OME + $2\pi + 2\pi/\sigma$ (Chumillas <i>et al.</i> , 2007, 2008) With final-state interactions OME + $2\pi/\sigma + a_1$ (Itonaga <i>et al.</i> , 2008; Itonaga and Motoba, 2010)	$\begin{array}{c} 0.07 \pm 0.08 + 0.08 \\ -0.590 \\ -0.401 \\ +0.041 \\ +0.028 \\ +0.083 \end{array}$	$\begin{array}{c} -0.16 \pm 0.28 + 0.18 \\ -0.698 \\ -0.340 \\ -0.207 \\ -0.126 \\ +0.044 \end{array}$

Tokyo Institute of Technology

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)

Summary

- We propose the J-PARC E75 experiment to investigate ${}^{5}_{\Lambda\Lambda}$ H.
 - A light Ξ hypernucleus, ${}_{\Xi^{-}}^{7}$ H, will be produced by the 7 Li(K^{-} , K^{+}) reaction in the phase-1 experiment.
 - ${}^{5}_{\Lambda\Lambda}$ H will be produced by decay of ${}^{7}_{\Xi^{-}}$ H with a large probability.
 - Decay pion spectroscopy for ${}_{\Lambda\Lambda}{}^{5}H \rightarrow {}_{\Lambda}{}^{5}He + \pi^{-}$.
- Beyond E75, different double- Λ hypernuclei (${}_{\Lambda\Lambda}^{6}$ He etc.) and/or weak decay may be explored. (Any suggestion is welcome!)
- If you're interested in the J-PARC E75 experiment, please feel free to contact us!
 Thank you for your attention!

34/3

東京.

Hiroyuki Fujioka (fujioka@phys.titech.ac.jp)