

Status Update on Z(4430)

PANDA PWG Meeting, March 3rd, 2021

by Umut Keskin¹

on behalf of PANDA-TR Group

¹Bolu Abant Izzet Baysal University

Introduction

- The situation formed around the theoretical interpretation of the Z_c(3900) resonance does not differ considerably from activities intending to explain features of Z(4430). There are attemps to treat it as the tightly bound diquarkantidiquark state, as the four-quark bund state composed of conventional mesons.
- The interesting idea was suggested to consider the Z_c(3900) and Z(4430) resonances as the ground and first radially
 excited states of the same diquark-antidiquark multiplet. The main decay channels of these resonances:

 $Z_c^\pm(3900)\to J/\psi\,\pi^\pm$, $Z^\pm(4430)\to\psi'\pi^\pm$

- By looking at those main decay channels, and also by observation that the mass difference between 1S and 2S states $m_{\psi'} m_{J/\psi}$ is approximately equal to the mass splitting $m_Z m_{Z_c}$.
- The charmonium-like resonance Z_c(3900) and its excited state Z(4430) are among the particles that are serious candidates for double heavy tetraquarks [1].

Introduction

- For a first time in 2008, the Belle Collaboration reported a distinct peak in the $\pi^{\pm}\psi'$ invariant mass distribution in $B \rightarrow K\pi^{\pm}\psi'$ decay. The measured mass and width were $M = 4433 \pm 4(\text{stat})2(\text{syst})$ MeV and $\Gamma = 45^{+18}_{-13}(\text{stat})^{30}_{-13}(\text{syst})$ MeV [2].
- The Belle Collaboration then, during the observation of a new charmonium like state $Z_c^+(4200)$, in addition, they found evidence for $Z^+(4430) \rightarrow J/\psi \pi^+$ [2, 3].
- In the first independent confirmation by LHCb Collaboration, its spin-parity was assigned as 1^+ . The mass of the resonance, $4475 \pm 7^{+15}_{-25}$ MeV, and its width, $172 \pm 13^{+37}_{-34}$ MeV, were measured [2, 4].
- According to PDG, mass and width of *Z*(4430) is;

$\overline{L}_{c} (4430) $ $I^{G} (J^{PC}) = 1^{+} (1^{+-}) G, C \text{ need confirmation.}$ $Vas X (4430)^{\pm}$			
Z _c (4430) MASS			
$Z_c(4430)$)) MASS	4478 ⁺¹⁵ ₋₁₈ MeV	
$Z_c(4430)$ $Z_c(4430)$)) MASS)) WIDTH	4478 ⁺¹⁵ ₋₁₈ MeV 181 ± 31 MeV	
Z _c (4430 Z _c (4430 Decay M)) MASS)) WIDTH Modes	4478 ⁺¹⁵ ₋₁₈ MeV 181 ± 31 MeV	
$Z_c(4430)$ $Z_c(4430)$ Decay M <i>Mode</i>)) MASS)) WIDTH Modes	$\begin{array}{c} 4478^{+15}_{-18} \ {\rm MeV} \\ 181 \pm 31 \ {\rm MeV} \end{array}$	P (MeV/c)
$Z_c(4430)$ $Z_c(4430)$ Decay N $Mode$ Γ_1)) MASS)) WIDTH Modes $\pi^+\psi(2S)$	$\frac{4478^{+15}_{-18} \text{ MeV}}{181 \pm 31 \text{ MeV}}$ $\frac{523}{5}$ 52	7 P (MeV/c) 711

Monte Carlo Simulation

- Two intermediate resonances ($Z(4430)^{-}$ and $\psi(2S)$),
- Four final state particles : π^+ , π^- , e^+ and e^- (or μ^+ and μ^-).

Event Generation

- Following the decay chain given in the previous slide, we defined a decay file by selecting decaying particles/resonances from evt.pdl file inside of PandaROOT software.
- PHSP and VLL models and noPhotos were used from EvtGen.
- That file "pp_ZC4430_ee_nophot.dec" will specify the signal decay channel.

• From this decay channel as we can see in the decay file, in the next slides there are results for e+ e- as final state particles.

•••	▶	
器 <	> pp_Zc4430Minus_ee_nophot.dec	
pp_Zc4430Minus_ee_nophot.dec > No Selection		
1	noPhotos	
2		
3	Decay pbarpSystem1	
4	1.0 Z_c(4430)- pi+ PHSP;	
5	Enddecay	
6		
7	Decay Z_c(4430)-	
8	1.0 psi(2S) pi- PHSP;	
9	Enddecay	
10		
11	Decay psi(2S)	
12	1.0 e+ e- VLL;	
13	Enddecay	
14		
15	End	
16		

Event Generation

- Shell script for producing events for Z(4430).
- We can produce signal or background events by only changing "prefix".
- We are producing events as 10k packets up to 1M (for now).
- In the next slides, there are results for Z(4430) analysis with 30k events produced.

```
z4430_runall_signal.sh
           z4430_runall_signal.sh
z4430_runall_signal.sh > No Selection
      #!/bin/bash
      . ../../../build/config.sh
      nev=10000
      prefix="signal" # signal | bkg
      if [[ "$prefix" == "signal" ]]; then
      prefix="signal_pp_Zc4430Minus_ee_nophot_1_"$nev
      input="decfiles/pp_Zc4430Minus_ee_nophot.dec"
      elif [[ "$prefix" == "bkg" ]]; then
      prefix="dpm_pp_Zc4430Minus_ee_nophot_1_"$nev
      input="decfiles/dpm_Z4430Minus_ee"
      fi
      pbeam=15.0
      geantVersion="TGeant4"
      if test "$1" != ""; then
        nev=$1
     fi
      if test "$2" != ""; then
        prefix=$2
     fi
      if test "$3" != ""; then
        input=$3
     if test "$4" != ""; then
        pbeam=$4
     fi
     if test "$5" != ""; then
        geantVersion=$5
  35 fi
      root -l -b -q tut_sim.C\($nev,\"$prefix\",\"$input\",$pbeam\,\"$geantVersion\"\)
      root -l -b -q tut_aod.C\($nev,\"$prefix\"\)
```

Reconstruction Algorithm & Strategy

- For particle reconstruction, we used an algorithm to select particles like in this scheme. After each cut/selection algorithm, reconstructed mass was remaked.
- At first, no cuts and nothing applied, just all reconstructed mass for that particle.
- Secondly, we applied McTruthMatch algorithm to select particles.
- After that, McTruthMatch filtered candidates were gathered and Vertex Fit (p>0.01) applied to them.
- Then, after these two filters, candidates were also applied Mass Constraint Fit which is also p>0.01.
- Lastly, after all that selection algorithm filters, last survived particle candidates were also applied a Rough Mass cut about ± 0.25 GeV with "RhoMassParticleSelector".

Reconstruction Algorithm & Strategy: ψ (2S)

Reconstruction Algorithm & Strategy

- For particle reconstruction, we changed algorithm to select particles like in this scheme. After each cut/selection algorithm, reconstructed mass was remaked.
- At first, no cuts and nothing applied, just all reconstructed mass for that particle.
- Secondly, we applied a Rough Mass Cut about \pm 0.25 GeV with "RhoMassParticleSelector".
- After that, McTruthMatch algorithm to select particles were applied.
- Then, McTruthMatch filtered candidates were gathered and Vertex Fit (p>0.01) applied to them.
- Lastly, after all that selection algorithm filters, last survived particle candidates were also applied a Mass Constraint Fit which is also p>0.01.

Analysis : ψ (2S) Mass Reco. (Compare)

 ψ (2S) Mass : 3686.10 \pm 0.06 MeV (PDG)

Reconstruction Algorithm & Strategy: Z(4430)

Analysis : Z(4430) Mass Reco. (Compare)

Z(4430) Mass : 4478 $^{+15}_{-18}$ MeV (PDG)

Analysis : Z_{cs}(3985)

• We tried to implement newly proposed Z_{cs}(3985) to the "evt.pdl" file in PandaROOT (EvtGen).

Analysis : Z_{cs}(3985)

- Produced 1M events from each decay mode on our Linux Server PC

- Produced 1M events from each decay channel on our Linux Server PC

- Produced 1M events from each decay channel on our Linux Server PC

Producing DPM Background data at beam momentum (pbeam) = 8.5454 GeV/c for Z_c(3900).

Producing DPM Background data at maximum pbeam 15.0 GeV/c for Z(4430) and Z_{cs}(3985).

• We already produced at least 1M events for each particle and decay mode as well as we also aiming to produce at least 10M events for DPM background soon.

Discussion & Outlook

- For this Z(4430) analysis study, we are aiming to find particle widths accurately by fitting the reconstructed candidates via Breit-Wigner fit function.
- At this moment, after some problems, now we are producing some big data on our Dell Server PC. 1M events for Z_c(3900)⁺, Z_c(3900)⁻, Z(4430)⁺, Z(4430)⁻ and Z_{cs}(3985)⁻ have already been produced.
- We are also targeting to produce at least 10M DPM events for initial analysis study. Producing ongoing.
- After producing some big data, signal-to-background ratio and reconstruction efficiency studies will be done with further analysis.

References

- [1] Agaev S., Azizi K., Sundu H., (2017). "Treating Zc(3900) and Z(4430) as the ground-state and first radially excited tetraquarks", Phys. Rev. D 96, 034026.
- [2] Azizi K., Er N., (2020). "Modifications on parameters of Z(4430) in a dense medium", Physics Letters B, Volume 811, 135979, ISSN 0370-2693, https://doi.org/10.1016/j.physletb.2020.135979.
- [3] Chilikin K. *et al.*, Belle Collaboration, (2014). "Observation of a new charged charmoniumlike state in $\overline{B}^0 \rightarrow J/\psi K^-\pi^+$ decays" Phys. Rev. D, 90 (11), Article 112009.
- [4] Aaij R., *et al.*, LHCb Collaboration, (2014). "Observation of the resonant character of the $\overline{B}^0 \rightarrow J/\psi K^-\pi^+$ state", Phys. Rev. Lett., 112 (22), Article 222002.

THANK YOU FOR YOUR ATTENTION!