The η_{c1}^{2} analysis using genetic algorithm

Áron Kripkó

Justus-Liebig University, Gießen

AG Brinkmann

March 3, 2021

- For hybrid charmonium states the ground state is expected to be 1⁻⁺ spin-exotic
- Lattice QCD calculations predict its mass to be around 4290 MeV with a width of 20 MeV
- One of its possible decay channel with 7 photons in the final state is used as a benchmark channel in the EMC TDR
- Due to the low efficiency of this channel, alternative channels should be investigated

¹Nora Brambilla et al., Spin structure of heavy-quark hybrids, PRD 99, 014017 (2019)

Cross-section	Cirrificonco	Beam time	Significance after
[pbarn]	Significance	[days]	1 year
33	0.07 ± 0.03	21650	0.009 ± 0.004
50	0.08 ± 0.04	14289	0.012 ± 0.006
500	0.27 ± 0.13	1429	0.14 ± 0.07
2000	0.5 ± 0.3	357	0.51 ± 0.3
100000	3.7 ± 2	7	26.7 ± 14.4

Possible decay channels - Frank E. Close et al. Gluonic Hadrons and Charmless β Decays (1997)

Table 1: Some possible experimentally accessible final states of J^{PC} exotic charmed hybrids and glueballs below $D^{**}D$ threshold. Note that open charm modes of ψ_g may be suppressed by a selection rule [1]. For hidden charm modes, the charmonia tend to have the same C as that of the parent ψ_g . The light hadron modes are expected to be enhanced for ψ_g with C = +. See the main text for details. Decays to $p\bar{p}\{\pi, \eta^{(\ell)}, \omega, \rho, \phi\}$ are allowed for all states listed.

J^{PC}	Open charm	Hidden charm	Light hadrons	
0^{+-}	Quantum	$J/\psi \{f_{\{0,1,2\}}, (\pi \pi)_S\}$	$a_{\{0,1,2\}}\rho$; $a_{\{1,2\}}\{b_1,\gamma\}$	
	numbers	$h_c \eta$; $\eta_c h_1$	$b_1\pi; h_1\eta^{(')}$	
	forbid	$\chi_{c0}\omega$	$\{(\pi \pi)_S, f_0\}\{\omega, \phi\}$	
	$D^{(*)}D^{(*)}$	$\chi_{c\{1,2\}}\{\omega, h_1, \gamma\}$	$f_{\{1,2\}}\{\omega, h_1, \phi, \gamma\}$	
$0^{}$	D^*D	$h_c(\pi\pi)_S$	$a_{\{0,1,2\}}b_1; a_{\{1,2\}}\{\rho,\gamma\}$	
		$J/\psi\{f_{\{1,2\}}, \eta^{(')}\}$	$\rho\pi$	
		$\chi_{c0}h_1; \eta_c\{\omega, \phi\}$	$f_0 h_1; \eta^{(')} \{\omega, \phi\}$	
		$\chi_{c\{1,2\}}\{\omega, h_1, \gamma\}$	$f_{\{1,2\}}\{\omega, h_1, \phi, \gamma\}$	
1^{-+}	D^*D,D^*D^*	$\chi_{c\{0,1,2\}}(\pi\pi)_S$	$a_{\{0,1,2\}}a_{\{0,1,2\}}; a_{\{1,2\}}\pi$	
		$\eta_e \{f_{\{1,2\}}, \eta^{(\prime)}\}$	$f_{\{0,1,2\}}f_{\{0,1,2\}}; f_{\{1,2\}}\eta^{(')}$	
		$\chi_{c\{1,2\}}\eta$	$\{\rho, \gamma\}\{\rho, b_1\}; b_1b_1$	
		$\{h_c,J/\psi\}\{\omega,h_1,\phi,\gamma\}$	$\{\omega,h_1,\phi,\gamma\}\{\omega,h_1,\phi,\gamma\}$	
2^{+-}	$D^*D,\ D^*D^*$	${h_c, J/\psi}{f_{\{0,1,2\}}, (\pi\pi)_S}$	$a_{\{0,1,2\}}\{\rho, b_1, \gamma\}$	
		${h_c, J/\psi}\eta^{(')}$	$\{\rho, \gamma, b_1\}\pi$	
		$\{\eta_c, \chi_{c\{0,1,2\}}\}\{\omega, h_1, \phi, \gamma\}$	$\{\eta^{(\prime)}, f_{\{0,1,2\}}\}\{\omega, h_1, \phi, \gamma\}$	

New decay channel

- 100000 signal events
- 500000 dedicated background events

•
$$\bar{p}p \rightarrow \chi_{c1}\eta\eta$$

• $\bar{p}p \rightarrow J/\psi\eta\eta\pi^0$

$\gamma\gamma$ invariant mass

J/Ψ invariant mass

J/Ψ invariant mass after the fit and cut

χ_{c1} invariant mass

$\bar{p}p$ invariant mass

η invariant mass cut

χ_{c1} invariant mass cut

$\tilde{\eta_{c1}}$ invariant mass after the mass cuts

Charmonium mass constraint fit probability with other cuts

η_{c1} invariant mass after the mass and all 6 prob. cuts

э

Image: A mathematical states and a mathem

η_{c1} invariant mass after adding the $\eta \ E_{CM}$ cut

	Genetic	Manual
4C fit	0.000024	0.001
χ_{c1} mass fit	0.273	0.001
η mass fit	0.014	0.001
Other η mass fit	0.583325	0.001
Second 4C fit	0.6574	0.001
η mass cut	490-583 MeV	528-590 MeV
χ_{c1} mass cut	3.38-3.64 GeV	3.45-3.62 GeV

æ

イロト イヨト イヨト イヨト

	Genetic	Manual	Generated
Bck. 1	16633	14141	500000
Bck. 2	1055	1277	500000
All bck.	19406	17167	1000000+comb.
Signal	782	629	100000
Significance	5.6	4.8	$FTM/\sqrt{Reconst.}$

æ

	Gen.	TDR	Gen.	TDR	Concrated
	$\mu^+\mu^-$	$\mu^+\mu^-$	e ⁺ e ⁻	e^+e^-	Generateu
Bck. 1	1199	3060	109	1673	1000000
Bck. 2	57	867	6	282	1000000
Bck. 3	349	804	46	396	1000000
Bck. 4	1477	3057	343	3140	1000000
All bck.	4616	9132	722	5998	4000000+comb.
Signal	452	315	48	47	100000
Significance	6.65	3.29	1.79	0.61	$FTM/\sqrt{Reconst.}$
Filt. DPM	158	43	-	-	25000000

Extracted $\tilde{\eta_{c1}}$ Parameters - Voigt - Manual cuts

- Mass: (4.297 \pm 0.002) GeV
- \bullet Width: (0.003 \pm 2) GeV
- Resoultion: (0.108 \pm 0.004) GeV

Extracted $\tilde{\eta_{c1}}$ Parameters - Voigt - Genetic cuts

- \bullet Mass: (4.295 \pm 0.002) GeV
- \bullet Width: (0.021 \pm 0.017) GeV
- Resoultion: (0.091 \pm 0.042) GeV

- The efficiency is better
- The genetic algorithm improves the significance in case of this decay channel as well
- Further background reduction (Bck. 1)
- Perform DPM studies and beam time assumptions for this channel -Access to Virgo/Kronos
- Investigate other decay channels