A proposal to apply an embedded MicroBlazeProcessor in FPGA module of the cRIO target control

Jerzy Tarasiuk

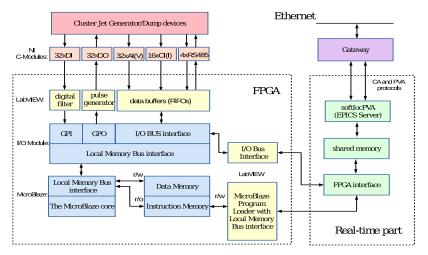
National Centre for Nuclear Research, Warsaw and Faculty of Physics, University of Warsaw

PANDA CM 21/1 Target Session 2021-03-10

1/6 Jerzy Tarasiuk A proposal to apply an embedded MicroBlaze® Processor in FPGA module of the cRIO target control

Introduction

Initially we planned the Cluster-Jet Target control program having all its logic in the Real-Time part of the CompactRIO (cRIO-9039); but it poses a risk of malfunction due to the Operating System failure during the control operation. To what extent could FPGA help to resolve this problem? I made a test of communication between FPGA program and a C program running on the RT part and found that the first is not affected by the RT system reboot, so:


- The control logic located in FPGA can be functioning during the reboot, and take the necessary actions quickly; if all the logic and device I/O is in the FPGA, only the supervisory system communication is unoperable during the reboot.
- The FPGA can reboot the Operating System if it detects the latter is unoperable.

Having a complex algorithm to implement, I would like to have a processor implemented in the FPGA - this can simplify the control system design and help to organize it. I have chosen MicroBlaze, which has a detailed guide on integration with LabVIEW, and I got it working.

The processor is 32-bit, has memory-mapped I/O, and among other peripherals has GPIs/GPOs (General Purpose I/O-s up to 4×32 each); it has Harvard architecture (separate data/instruction access paths).

The controlled devices are connected via C-Modules; together with communication with Real-Time (RT) part of the cRIO they can be accessed from the LabVIEW program only - the processor needs to be "wrapped" in the LabVIEW FPGA program.

Also, the LabVIEW FPGA program mediates in loading the control program to the processor's memory.

A suggested scheme of incorporating the MicroBlaze processor into NI-9039 cRIO FPGA.

- The MicroBlaze and its additions (memory, I/O Module) are shown as blue boxes; the processor's access to its instruction memory is read-only to protect its program.
- Yellow boxes represent interface elements in LabVIEW: these above the MicroBlaze connect it with C-Modules, those at the right hand side provide communication between the MicroBlaze and an "FPGA interface" program running in the RT part.
- Green boxes are software elements in the RT part.

The MicroBlaze is to have a "scanner" architecture: its main loop will examine signals (external - from the LabVIEW blocks, and its internal) and have an action assigned for each of them.

Thank you for your attention