

SADC Firmware Developments

EM

PANDA CM 21/1 - Oliver Noll 10.03.2021

- 1. The Aim of Digital Signal Processing
- 2. Short Summary of Feature Extraction Methods
- 3. Achieved Performance with Beam at MAMI

2. Update of the PANDA SADC Firmware

- 1. Full Free Streaming Data Acquisition
- 2. Request System for Traces and Rates
- 3. Configurable Package Sizing
- 4. Trigger Synchronisation

3. Availability of latest Developments on GitLab

Oliver Noll EM **The PANDA Backward Calorimeter** Mounting Plate Vacuum Insulation Panels Cover panda **524** lead tungstate crystals Energy range: 10 MeV – 700 MeV Modular design (five types of modules) E HIM Full functional prototype ۲ Helmholtz-Institut Mainz More than 500 hours of experiments at the **Mainz Microtron** (e^{-} and γ) Development finished **Cooling Shells** Holding Structure ~900 mm Submodule Types:

1/26

Detection Principle – Single-Crystal Unit

EM

Challenge: Compression of Information

Oliver Noll

Signal Digitisation and Processing

Challenge:

- Self-triggering: pulse identification
- Low detection threshold (< 3 MeV)
- Amplitude extraction (amplitude ∝ energy)
- T₀ extraction (event mapping)
- Pileup detection and correction

Field Programmable Gate Arrays (FPGAs):

Firmware for all 64 ADC Channels:

- Self-triggering data acquisition (free streaming)
- Digital filter (sharper bands, stronger attenuation)
- Feature extraction routines
- High event rates (> 100 kHz / channel)
- Slow control (settings, thresholds, requests, ...)

Oliver Noll

Signal Smoothing via Finite Impulse Response (FIR) Filtering

$$y[n] = \sum_{k=0}^{M} \mathbf{A}_{k} x[n-k]$$

- Finite number of samples for output \rightarrow no self-excitation
- Precise adoption on pulse shape
- The more filter coefficients (A_k), the better
- Resource intensive on FPGA
- Implementation via distributed arithmetic and/or DSP slices

Identification

- Extraction function
- Highly sensitive on pulse shape
- Improvement of detection efficiency (small energies!)

Detailed explanations:

- Digital Signal Processing for the Measurement of Particle Properties with the PANDA Electromagnetic Calorimeter, Oliver Noll PhD Thesis
- EMC TDR Update 2021

Digital Signal Processing for APFEL Preamplifier Pulses

EMP

Identification

- Extraction function
- Highly sensitive on pulse shape
- Improvement of detection efficiency (small energies!)

Digital Pulse Shaping

EM

Pileup detection and correction

Detailed explanations:

- Digital Signal Processing for the Measurement of Particle Properties with the PANDA Electromagnetic Calorimeter, Oliver Noll PhD Thesis
- EMC TDR Update 2021

Oliver Noll

Identification

- Highly sensitive on pulse shape
- Improvement of detection . efficiency (small energies!)

Digital Pulse Shaping

EMP

6/26

Detailed explanations:

- Digital Signal Processing for the Measurement of Particle Properties with the PANDA Electromagnetic Calorimeter, Oliver Noll PhD Thesis
- EMC TDR Update 2021

Oliver Noll

Identification

- Highly sensitive on pulse shape
- Improvement of detection . efficiency (small energies!)

Digital Pulse Shaping Components of Amplitude Extraction

falling

1000

Time

 H^p_{mrai}

FIR

FIR

Time [ns]

Time

EM

6/26

Detailed explanations:

Digital Signal Processing for the Measurement of Particle Properties with the PANDA Electromagnetic Calorimeter, Oliver Noll PhD Thesis

50

-50

-200

-250 -300

-350<u></u>∟

isin

ā

500

Derivation \rightarrow Inf

Built-in baseline

Elimination of fa

Pileup detection

Amplitude -150

EMC TDR Update 2021

Oliver Noll

Oliver Noll Digital Zero Cross Interpolation for TO-Determination

$$T_0 = i_0 + \frac{D'[i_0]}{D'[i_0] - D'[i_1]}$$

$$D' \text{ is second derivative,}$$
since *D* is the first one

- Fragmentation of time between samples: **12.5 ns / 64 = 195 ps**
- Precision is a function of scaling
- Impact on FPGA resources

EM

As always: good compromise between FPGA resources and precision

TO-Determination: Pulse Transportation along Time Axis

Oliver Noll

Digital Signal Processing for APFEL Preamplifier Pulses

A (G)H

EMP

TO-Determination: Pulse Transportation along Time Axis

Oliver Noll

$$T_0 = i_0 + \frac{D'[i_0]}{D'[i_0] - D'[i_1]}$$

EMP

- Technical precision limitation
- Can be improved if necessary
 - Impact on other parts of the implementation
 - Larger word widths
 - More cycles at the division

Digital Signal Processing for APFEL Preamplifier Pulses

Oliver Noll

EM

Example: APD gain 200:

TR(60 MeV) = 1.517(10) ns TR(500 MeV) = 182(1) ps

Test Measurements at the Mainz Microtron MAMI

- Energy stability: 13 keV (1σ)
- Beam spot width: ~1mm

Oliver Noll

EM

Prototype Tests at the Mainz Microtron MAMI

Oliver Noll

Energy Calibration and Sum Spectra

- Differences in single-crystal unit responses
- Geant4 simulation: Expected deposited energy
- Energy calibration \rightarrow normalisation

- APD Gain: 150, threshold: 2.5 MeV
- Position $\propto E$, Width $\propto \sigma_F \rightarrow \sigma_F/E$

Prototype Tests at the Mainz Microtron MAMI

3x3 Sum Spectra

Cliver Noll The Relative Energy Resolution

- Most important characterisation of a calorimeter
- Distinguishability of nearby energies

EM

Constant Stochastic Noise

Technical Design Report (TDR) requirements:

 $a_{\text{TDR}} \leq 1\%$ \checkmark

•
$$b_{\text{TDR}} \leq 2 \frac{\%}{\sqrt{\text{GeV}}} \checkmark$$

- $c_{\text{TDR}} \leq 3 \text{ MeV} \checkmark$
- $\sigma_E/E(1 \text{ GeV})_{\text{TDR}} \le 2.5\%$

The Detector Response as a Function of the Deposited Energy

Oliver Noll

EM

Leakage energies considered by Geant4 simulation

Nonlinearity ~ 1 MeV, O(‰)

High-Rate Measurements (PANDA Rate $\sim 100 \text{ kHz} + R_{\text{NHR}}$)

EMP

$P_{\rm 100kHz}:$ Pileup probability at 100 kHz

Dead time $ au$	P _{100kHz}	P _{100kHz}	P _{100kHz}
	uncorrected	corrected	TDR
464(13) ns	13.9 %	4.53(12) %	1 %

- Pileup detection on FPGA and pileup correction on CPU
- Reduction of effective pileup
 probability

15/26

IGUY

Prototype Tests at the Mainz Microtron MAMI

Latest Firmware Developments for the PANDA SADC

• SADC v 2.0

Oliver Noll

- Modification of "Bonn Firmware" Kindly supported by Johannes Müllers
- First self-triggering DAQ implementation in 2018
- Successfully tested with beam

ΕM

- SADC v 3.5
- Final SADC for PANDA
- Also used for FAIR Phase-0 in Mainz
- Update and restructuring of firmware
 - Full free streaming approach
 - Request system for traces and rates

16/26

Configurable package sizing

Latest Firmware Developments: New Hierarchy

Firmware Developments for the PANDA SADC

EMP

Firmware Developments for the PANDA SADC

17/26

Oliver Noll

Latest Firmware Developments: High-Rate Capability

Oliver Noll

Latest Firmware Developments: High-Rate Capability

• Noise hits: 100 kHz / channel (very conservative)

Latest Firmware Developments: Free Streaming Mixed Readout

Time

Simulation: 200 kHz Hit Rate per Channel

Signals	Waves
Time	0 100 us
i clk 80=1	
i clk 125=0	
i reset 125=0	
o ready fe=0	
i request ra=0	
cnt flag=0	
cc[7:0]=0	o Mole I Mo To I To Io Mo To Io Io Jolio Mo
amp[15:0]=0000	ecce])+]e+), <u>∏</u> eece]e+ , ≬e+ , ∮e+ , ∮eece]]ecce , ∮eece , ↓ecce], ↓ecce], ↓ecce]+),]+]], ↓e+]]eece
ts[39:0]=000000000	00000000000)/+]e+ // 1 0000000+]e+ // /0000000+]e0e+ //0000000+ /+ //00000+ // (0000+ //+/// 1+///00+///0000000000000000
hit cnt meas[13:0] =896	0 X+)96 X 224 X+ (3+)352 X 416 448 +)512 576 688 X+ (4 896
hit cnt theo[13:0] =896	0 //64/96 /+%/224 /2+/+/320/352 //416 /448 /4+/512 //576 /608 /+/()+1/832)/896
ss data valid=0	
ed packet data[7:0]=00	C 00 00 00 00
ed tvalid=0	
ed tlast=0	
-	

- 200 kHz / channel ٠
- Free streaming mixed readout ۲
 - Different data frames appear to arbitrary times
 - Request system
- Rate request (one small package)
- Sample request (64 samples / channel) •
- Still, plenty of headroom

Latest Firmware Developments: Free Streaming Mixed Readout

SADC Data Logic

Simulation: 200 kHz Hit Rate per Channel

2																		100) us					
																					\leq			
θ		10		0	1	3 1	Ð	0	10	0	10	0	0	10	0	0	.0	.0						
0000	11+	10+	1	0000	1	9 4 1	10+	0000	10000	10000	14	0000	10000	9 9999 6	15	17	1.0+	166	00			-		
00000000000	11+	0+	ñ	00000	IØ+16	9 4 1	θ +	00000000	1000+	10000000	1.	00000+	1000	0000+	17	17	0+	100	00000000					
0		196	Ň	274	- î	28	13+	352	1416	448	1.0	1512	576	688	10		18+	89	16					
θ.	64	96		224	-6	1	276	252	Ante	1449	Ča.	1512	Were	Vcoe	viv	1.1	027	leas						
	-				-																			
8 80	÷									-								-						
	-				_	-		_									_			_				_

- 200 kHz / channel
- Rate request (one small package)
- Sample request (512 samples / channel)
- More FIFO depth, more resources... not necessary
- Configurable package sizing:
 - Long traces for detector adjustments (>512 samples)
 - Shorter traces for pileup events (≈128 samples)
 - Very short trace for monitoring (≈64 samples)

i_clk_80=1 i_clk_125=0 i_reset_125=0 o_ready_fe=0 i_request_ra=0 cnt_flag=0 cc[7:0]=0 amp[15:0]=000

ts[39:0]=00000 hit_cnt_meas[13:0]=896 hit_cnt_theo[13:0]=896

ss_data_valid=0 packet_data[7:0]=3E ed_tvalid=1 ed_tlast=0

Latest Firmware Developments: Pileup

• Feature extraction is capable to distinguish pulses

ΕM

• Software amplitude recovery

Latest Firmware Developments: Pileup

• Feature extraction is not anymore capable to distinguish pulses

EM

- Activation of sample sender for specific channel
- More sophisticated recovery on CPU

Arbitrary total trace length

Latest Firmware Developments: Availability of Source

https://gitlab.rlp.net/emp/sadc_data_logic

https://gitlab.rlp.net/emp/sadc_v_3_5

EM

Summary and Next Steps

Summary

- Digital signal processing optimised for APFEL preamplifier signals
- Successfully tested with beam
- SADC firmware which supports trigger-less readout concept of PANDA
- Firmware Update:
 SADC v. 2.0 → SADC v. 3.5
 - Restructuring of hierarchy
 - Full free streaming concept
 - Request system (traces, rates)
 - Configurable package sizing
 - Trigger synchronisation
- Source is available

Summary and Next Steps

Summary

- Digital signal processing optimised for APFEL preamplifier signals
- Successfully tested with beam
- SADC firmware which supports trigger-less readout concept of PANDA
- Firmware Update:
 SADC v. 2.0 → SADC v. 3.5
 - Restructuring of hierarchy
 - Full free streaming concept
 - Request system (traces, rates)
 - Configurable package sizing
 - Trigger synchronisation
- Source is available

Next Steps

- Current firmware will be used for
 - detector component tests
- Submodule calibration (FAIR Phase-0)

Preparations for Phase-0 and PANDA

Digital Signal Processing

EMP

Configurable Logic Blocks

Why so "fast"?

- Infrastructure adapted on problem
- True parallelism

Programmable Switch Matrix

Efficient Implementation on FPGA

Implemented on FPGA: $M = 19, k \in [0, 1, ..., 19]$

Lookup Table (LUT)

Possible result	Binary signature	Value
1	000	$A_0 \cdot 0 + A_1 \cdot 0 + A_2 \cdot 0 = V_0$
2	001	$A_0 \cdot 0 + A_1 \cdot 0 + A_2 \cdot 1 = V_1$
3	010	$A_0 \cdot 0 + A_1 \cdot 1 + A_2 \cdot 0 = V_2$
4	011	$A_0 \cdot 0 + A_1 \cdot 1 + A_2 \cdot 1 = V_3$
5	100	$A_0 \cdot 1 + A_1 \cdot 0 + A_2 \cdot 0 = V_4$
6	101	$A_0 \cdot 1 + A_1 \cdot 0 + A_2 \cdot 1 = V_5$
7	110	$A_0 \cdot 1 + A_1 \cdot 1 + A_2 \cdot 0 = V_6$
8	111	$A_0 \cdot 1 + A_1 \cdot 1 + A_2 \cdot 1 = V_7$

Example: $M = 2, k \in [0,1,2], 2^{M+1} = 8$

r_0 (-	4	4
~0 0	1	 1	1	0	0	0
$x_1 = 0$	0	 1	1	1	1	1
x_2 0	1	 0	1	0	0	1
output V	V_5	 V_6	V_7	V_2	V_2	V_3

- Only sums and bit shift operations
- Avoiding limited multiplication networks
- High order (20 coefficients) filter for all channels

Gliver Noll Hit Detection

$$\lambda(i_t) = \begin{cases} e^{A_t \cdot i_t} &: i_t \le P_t \\ M_t \cdot e^{-A_t(i_t - P_t)} &: i_t > P_t \end{cases}$$

- Sensetive on pulse shape
- Ingrease of detection efficiency

Amplitude Extraction

TMAX Pileup Detection

- Derivation \rightarrow Integration
- Build in baseline follower
- Elimination of falling edge
- Pileup detection and correction

Oliver Noll Time (T_0) Extraction

Measurements

Sum Contribution 3x3, 855 MeV

Oliver Noll

Threshold Scan and Dual Gain Readout

Oliver Noll

Pileup Detection and Correction

Type	ΔT	k	$\lambda = \Delta T \cdot 100 \mathrm{kHz}$	$P_{100\mathrm{kHz}}$
1	$\geq 1500 \mathrm{ns}$	0	0.150	86.1%
2	$\leq 450\mathrm{ns}$	1	0.045	4.3%
3	$\geq 450 \mathrm{ns} \wedge \leq 1500 \mathrm{ns}$	1	0.105	9.5%
4	$\leq 1500 \mathrm{ns}$	≥ 2	0.150	1.0%

Event Types at a Detector Rate of 110.35 kHz

10²

Oliver Noll

Pileup Detection and Correction

$$H_{\text{corr.}}^s = H_{\text{meas.}}^s \cdot \Sigma(H_{\text{meas.}}^p, H_{\text{meas.}}^s, \Delta t)$$

- Type 3 events (second pulse within falling edge of first pulse) are correctable
- Monochromatic electron beam
- Proof of principle
- To do: Map out Σ with simulations

stuna Vonuts OO Type 3 uncorrected Туре З Type 3 corrected 40000 Type 1 35000 Type 1 + Type 3 corr. 30000 25000 **Measurement** 20000 15000 10000 5000 500 1000 1500 2000 2500 3000 3500 Amplitude [a.u.]

Impact of Type 3 Correction

Beam Test with the EMC Prototype : Results

Parameter	Achie		TDR	Unit	
	Worst	Typical	Best		
Rel. En. Res.					
σ_E/E at 1 GeV	2.440(14)	2.207(6)	2.190(2)	≤ 2.5	%
Constant a	1.23(21)	1.08(14)	0.95(61)	≤ 1	%
Statistics b	2.02(65)	1.83(45)	1.78(30)	≤ 2	$\frac{\%}{\sqrt{E[\text{GeV}]}}$
Noise/Ch. c	2.14(9)	2.02(15)	1.92(60)	≤ 3	${\rm MeV}$
Non-Linearity					
Maximum	2.22(36)	1.26(24)	1.21(19)	-	%0
Timing					
Dead Time τ	-	464(13)	-	-	ns
Pileup $P_{100 \rm kHz}$	$13.9 (\mathrm{w/o \ corr.})$	4.53(12)	-	1	%
Highest Event Rate	-	-	375.4(6)	100	kHz

Simulations

EMP

Simulations for the Study of Digital Signal Processing Methods

Defined testing environment

Oliver Noll

- Realistic detector signals (pulse shape + noise)
- Optimisation of filter parameters
- Performance tests: detection efficiency, noise hit rate, linearity, time resolution, ...

- Noise hit rate (R_{NHR})
- Detection efficiency (η) for 3 MeV events

Generation of Realistic Detector Signals

$$\alpha = \frac{q}{M \cdot LY_{-25^{\circ}C} \cdot A_{eff} \cdot Q_{eff} \cdot e \cdot G_{ASIC}}$$
[MeV/channel]

EM

Parameter	Value	Unit	Source
q	0.122	mV/channel	[Cor18]
M	≥ 1	-	-
$LY_{-25 \circ C}$	500	$n_{\rm photo.}/{\rm MeV}$	[TDR08]
$A_{\rm eff.}$	16	%	[HAM09]
$Q_{\rm eff.}$	0.70	$n_{\rm elec.}/n_{\rm photo.}$	[HAM09]
e	$1.602176634 \times 10^{-19}$	С	[NT19a]
$G_{\rm ASIC}$	0.22×10^{15}	$\rm mV C^{-1}$	[Wie19]

 $H = \frac{E \,[\text{MeV}]}{\alpha(M) \,[\text{MeV/channel}]} \,[\text{channel}]$

 $A = E[\text{MeV}] \cdot \alpha(M)^{-1} \cdot e^N$

Generation of Realistic Detector Signals

Oliver Noll

$$C(I_i) = \cos_{I_i}(x + \phi) \cdot 10^{\frac{P(I_i)[dB}{20}}$$

$$T_{\text{noise}} = \sum_{i=1}^{N_{-}I} C(I_i)$$

Comparison between Simulation and Measurement

Oliver Noll

EMP

Comparison between Simulation and Measurement

Oliver Noll

EMP

Performance Tests with the Simulation Framework

• Generate trace for low gain and high gain

- Defined pulse appearance times
- Noise hit region
- Vary amplitudes (energies) and thresholds

Performance Tests with the Simulation Framework: Noise Hit Rate

Oliver Noll

DAQ Limit = 558 kHz – 100 kHz (true events)

EMP

Performance Tests with the Simulation Framework: Noise Hit Rate

Oliver Noll

EM

Example Threshold = 1.0 MeV Efficiency = 80.7 % (3 MeV events) NHR = 6.8 kHz

Performance Tests with the Simulation Framework: Time Resolution

Oliver Noll

EM

Example: APD gain 200:

TR(60 MeV) = 1.517(10) ns TR(500 MeV) = 182(1) ps

Performance Tests with the Simulation Framework: Linearity

Oliver Noll

Amplitude Distribution at 100 MeV and APD Gain 200

EM

Example: APD gain 200:

Always smaller than **160 keV** Above 100 MeV smaller than **50 keV** Single crystal threshold: **3 MeV**

Performance Tests with the Simulation Framework: Results

Parameter			Achieved	TDR	Unit				
APD Gain	1	50	20	0	2	-	-		
Preamp. Gain	LG	HG	LG	HG	LG	HG	-	-	
Noise Hit Rate	Threshold: 2.5 MeV								
Single	331.1(26)	160.9(20)	151.44(200)	38.07(110)	67.93(145)	5.52(45)	-	kHz	
Dual $(I_{\rm comp.} = 200 \rm ns)$	1.27(5)	0.16(1)	0.13(1)	$<\!0.01$	$<\!0.1$	< 0.01	-	kHz	
Efficiency	Deposited Energy: 3 MeV								
Threshold: 2.5 MeV	39.6	50.4	41.3	55.3	42.4	58.5	-	%	
Threshold: 1.5 MeV	55.9	65.9	57.1	76.6	61.5	83.9	-	%	
Time Resolution									
$60{ m MeV}$	5.369(35)	1.998(13)	4.051(26)	1.517(10)	3.176(21)	1.198(8)	1	ns	
$500{ m MeV}$	635(4)	239(2)	477(3)	182(1)	380(2)	144(1)	150	\mathbf{ps}	
Non-Linearity	Upper Limit								
Dep. Energies $< 100 \mathrm{MeV}$	635.12(23)	288.24(179)	138.24(70)	134.80(7)	162.17(7)	103.66(73)	-	$\rm keV$	
Dep. Energies $\geq 100 \mathrm{MeV}$	64.81(3)	41.31(27)	44.90(3)	21.62(27)	44.78(3)	21.05(26)	-	$\rm keV$	

EMP

Table 5.3: The table summarises the results of the parameter extraction performance simulation.

EMP

Exploratory Measurements and Simulations for FAIR Phase-0

- Determination of $\pi^0 \gamma \gamma$ transition form factor \rightarrow hadronic light-by-light contribution to $g_{\mu} - 2$
- Version of PANDA backward calorimeter
- Electron scattering at heavy nucleus (Tantalum, Z=73)
- Measurement in forward direction

Oliver Noll

- Strong low energy electromagnetic background
- Relative energy resolution at small scattering angles?

Signal Generator for Low Energetic Background

EM

- High rates
- ...

Oliver Noll

Oliver Noll

Relative Energy Resolution (3x3) as a Function of the Luminosity

*Measurement of the Electromagnetic Transition Form Factor of the π^0 in the Space-Like Region via Primakoff Electroproduction. Letter of Intent, 2020

The Anomalous Magnetic Moment of the Muon

Dirac Theory:

Oliver Noll

Dirac equation with EM-field:

$$\begin{aligned}
(i\gamma^{\mu}\partial_{\mu} - e\gamma^{\mu}A_{\mu} - m)\psi &= 0\\
\text{Nonrelativistic limit } (E \approx m):\\
\frac{1}{2m} |\vec{p} - e\vec{A}|^{2}\psi - \frac{e}{m}\vec{S}\cdot\vec{B}\psi &= 0\\
& \mu_{s}\\
g &= \frac{\mu_{s}}{\mu_{L}} = 2 \qquad a_{l} = \frac{g_{l} - 2}{2} = 0
\end{aligned}$$

EM

Messung:

$$\omega_{L} = \frac{g}{2} \cdot \frac{eB}{m} \qquad \omega_{c} = \frac{eB}{m}$$

$$a_{\mu}^{\text{Exp.}} = 0.00116592089(63)$$
BNL (E821) 2006

$$\begin{array}{c} a_{\mu}^{\rm SM} = 0.00116591782(43) \\ a_{\mu}^{\rm Exp.} = 0.00116592089(63) \end{array} \right\} 4\sigma$$

Oliver Noll

Reduction of the Uncertainty on a_{μ}^{SM} by a Data-Driven Approach

Hadronic Light-by-Light Scattering

Primakoff π^0 Electroproduction

A(N,Z)

- Full developed FAIR detectors in standalone experiments
- PANDA backward calorimeter for FAIR Phase-0 at MAMI

Data-Driven Approach

The Primakoff π^0 Electroproduction

Oliver Noll

Measurement of the Electromagnetic Transition Form Factor of the π^0 in the Space-Like Region via Primakoff Electroproduction. Letter of Intent, 2020

EΜ

The Primakoff π^0 Electroproduction

Oliver Noll

FAIR Phase-0 Test Beam at MAMI

ΕM

- Polyethene $[-CH_2 CH_2]_n \rightarrow elastic electron proton scattering on H nuclei$
 - Coincidence with spectrometer A (proton) and prototype (electron)
 - Energy calibration
- Quasi-elastic scattering on ¹²₆C
- Rate and background determination on ¹⁸¹₇₃Ta
- Electron tagger test (electron-photon separation)

FAIR Phase-0 Test Beam: Background

Signal Generator:

Oliver Noll

- 1. Number of hits on trace by Poisson random generator: $R(I_{Beam}) = \frac{R_{100nA}}{100 nA} \cdot I_{Beam}$
- 2. Time of occurrence by uniform random generator
- 3. Energy amplitudes via background energy distribution by using a uniform random generator (0,1)