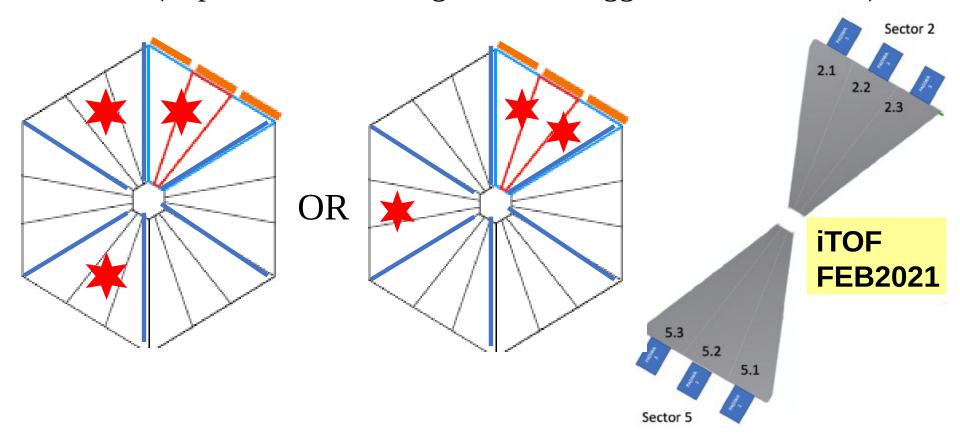

Trigger studies for pp @4.5 GeV

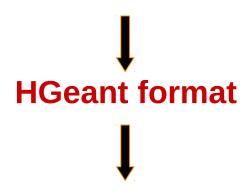
Izabela Ciepał IFJ PAN on behalf of the Trigger Group

HADES/PANDA experiment p+p @ 4.5 GeV


Proton beam: **7.5*10**⁷ **p/sek** (L=1.5 *10³¹ cm²/sek)

• Trigger on inner TOF MUL>=3: trigger rate 50 kHz (~0.1 suppression factor w.r.t reaction rate)

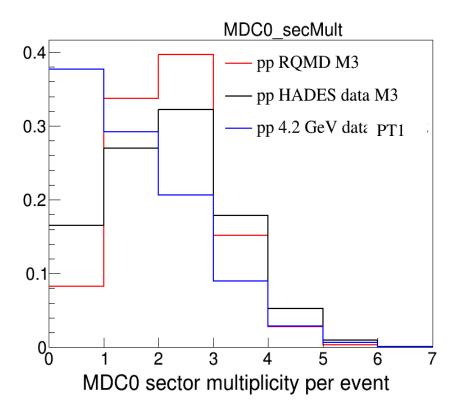
Main trigger


(implementation in logic of new trigger box-Jan Michel)

- Coincidence between sectors of Inner and Outer TOF required
- Only inner TOF

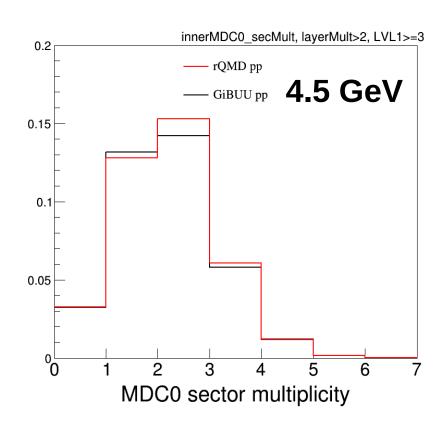
Trigger simulations

Benchmarking of event generators started: GiBUU, RQMD rmf
event generator



DST production and trigger emulation

- → iTOF not yet implemented in Hgeant/Hydra
- → inner MDC is used as inner TOF proxi
- → MDC0 sector proxi: MDC0 layerMult >= 3
- → phi angle of a given track was assigned to a given iTOF paddle


Triggering on inner TOF

Analysis of pp @ 3.5 vs pp@ 4.2 GeV data/simulations

M3=LVL1: (TOF||RPC)>=3

PT1: (TOF||RPC)>=2

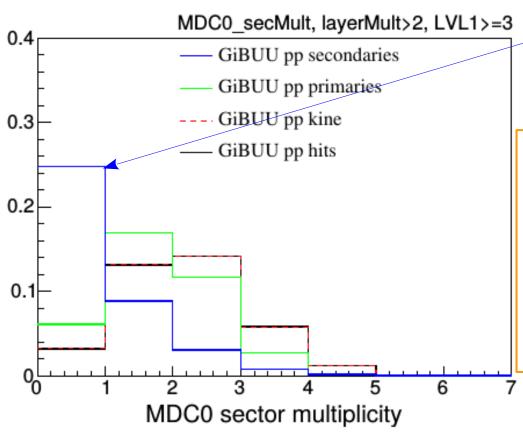
→ no big differences between rQMD and GiBUU

Table 3: Table presents trigger reduction for the pp simulations for different trigger conditions.

		ı	
		pp	pp
		GiBUU	RQMD
number	trigger condition	[%]	[%]
1)	LVL1>=3	38	39
2)	$MDC0_{secMult} \ge 2$	28	35
3)	$MDC0_secMult >= 2\&\&(TOF RPC)$	22	25
4)	$MDC0_{secMult} >= 3$	8	9
5)	$MDC0_{secMult} >= 3\&\&(TOF RPC)$	5.5	5.6
6)	5) MDC0_secMult==2 && nb_padd>=3	8.8	9.7

Estimated trigger rate with **6)** for pp and $7.5*10^7$ prot/s:

7.5*10⁷/s*0.8%(target interaction)* **9%** (trigger suppression)= **54 kHz**



For FEB2021 trigger (PT4) was defined as:

prediction of the trigger rate is $\sim 5\%$ (factor ~ 2 smaller than 6))

Contribution of primary and secondary paricles

- → in each event primary and secondary particles have been analyzed separately (geant kine)
- → each distribution normalized to total simulated events

particles which do not fulfill MDC0 layerMult >2 and LVL1>=3 conditions

LVL1>=3 && secMult>=3
29% (all particles)
13.5% (primary)
10.2% (secondary)

MDC0_secMult>=3 && (TOF||RPC)
5.5% (all particles)
2.3%(primary)
0.5%(secondary)

- → secondary particles contributes mostly as "empty events"
- → distributions for primary and total are very similar

W

FEB2021 TRIGGERS:

```
PT1 = mult_TOFRPC>=2 → minimum bias

PT3 = innerTOF && (TOF || RPC) → only sec.2 in trigger taken (by mistake)

PT4 = (SUM(iTOF_paddles)>=2)

&& (SUM((RPC_sec || TOF_sec) && iTOF_sec) >=2)
```

PT5 = VETO OR **PT6** = T0 OR

PT7 = STS OR (coincidence with T0)

PT8 = fRPC+hodoscopes

PT1/PT4/PT8 PT4

 $T_{beam} = 4.2 \text{ GeV}$ beam = $2x10^7/\text{spill} => 5*10^6/\text{s}$

	EXPERIMENT FEB21 (scalers)	SIMULATIONS (Report)
PT1 TOFRPCmult>=2	100 kHz	-
PT1 TOFRPCmult>=3	73 kHz	15 kHz*
PT4 FEB21	3.2 kHz	2 kHz*
ratio PT4/PT1mult>=3	0.044	0.13

PT1/beam ~2%

higher rates from experiment than expected from the simulations due to outside the target interactions

^{*} calculated as: 5*10⁶/s*0.8%(target interaction)*trigger suppression (slide6)

Experimental rates scaled to 7.5*10⁷/sec (beam intensity assumed in the proposal):

PT1 TOF/RPC mult>=3: 1 MHz

simul: 230 kHz

→ rate is 5 times higher
 with respect to simulations
 (outside the target interactions)

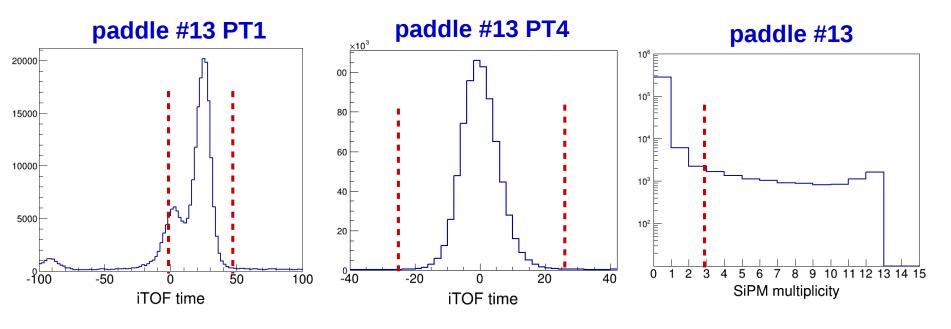
PT4: 48 kHz (<50 kHz)

simul: 30 kHz

→ PT4 only 1.6 times higher with respect to simulations

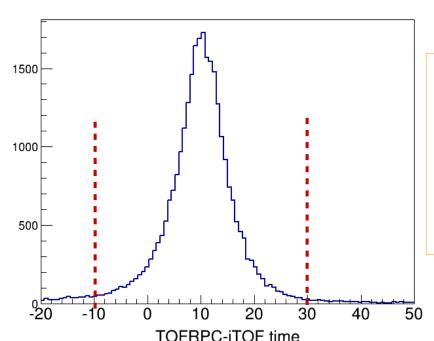
FOR MAIN TRIGGER 6) (slide 6)

- \rightarrow exp. rate of PT4Feb21 (5*10 6 /s+outside the target interactions) is: **3.2 kHz**
- → PT4Feb21 after extrapolation to 7.5*10⁷/s: **48 kHz**
- → simul. PT4Feb21 (7.5*10⁷/s): **30 kHz**
- → simul. Trig. 6) $(7.5*10^7/s)$: **54 kHz** (slide 6)


factor 1.8

with the same beam conditions as in Feb21 we will have:

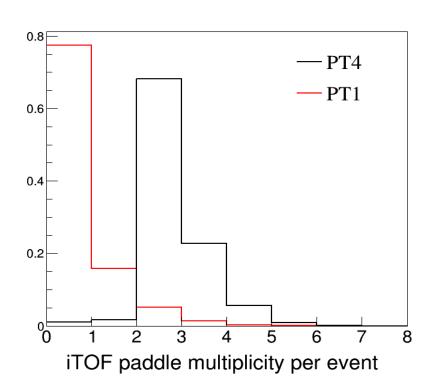
$$48 \text{ kHz} \times 1.8 = 86 \text{ kHz}$$


FEB2021 data – offline analysis of PT4

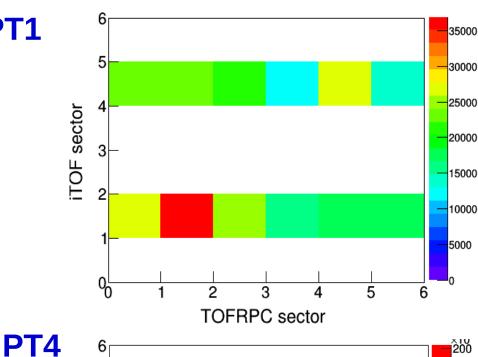
- → iTOF in Start2Raw/Start2Cal cathegory as modules 7 and 8 iTOF signal (Pavel, Jan):
- 1) time window: from 0-50 ns (PT1) and -25 25 ns (PT4)
- 2) paddle = at least 3 SiPM's fired

FEB2021 data - offline analysis of PT4

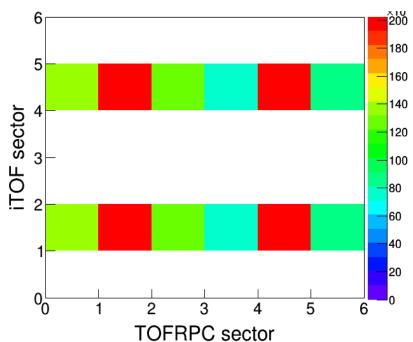
- 3) TOFRPC-iTOF coincidence time window taken into account,
- 4) dst with iTOF, TOF, RPC time calibration taken


Obtained ratios:

PT4"offline"/PT1mult>=2: ~ 2.3%


from scalers: 3.2%

FEB2021 data


offline analysis

PT1 → a lot of "empty events" PT4 → iTOF almost always multiplicity >=2

PT1

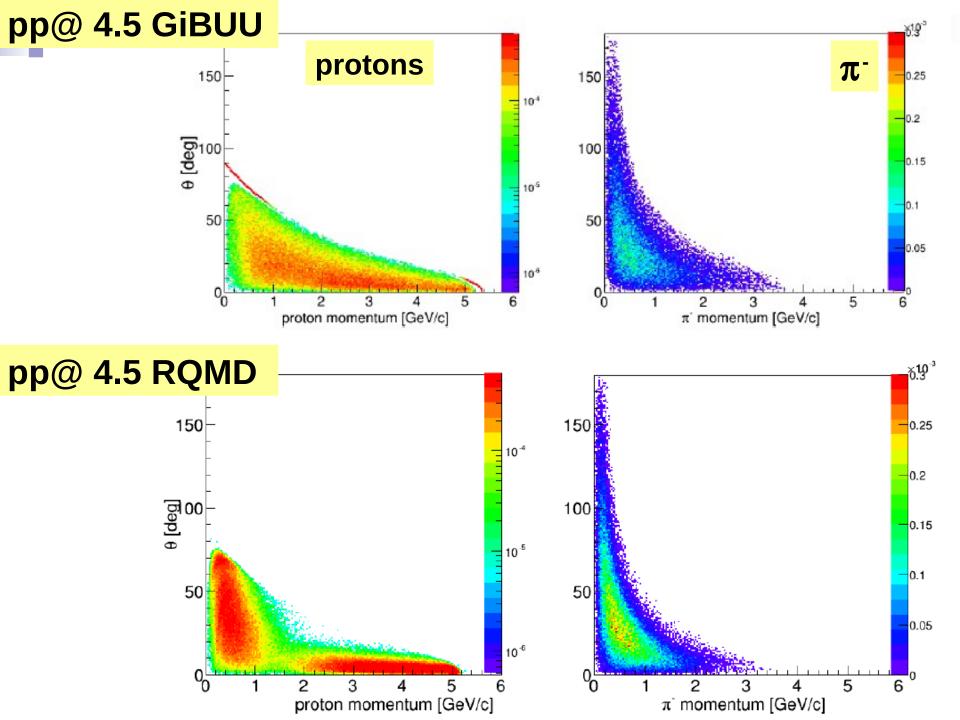
Outlook

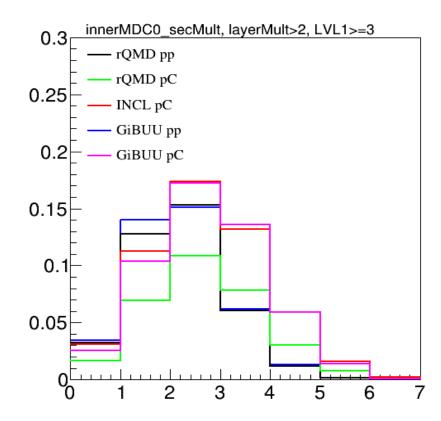
GOAL: studies of the trigger bias and the trigger reduction with dileptons using RQMD (JAM)/SMSH models.

→ see contribution from K. Piasecki

Preliminary studies

Simple model with inclusive e+e- from pp->ppX @ 4.5 GeV (same cross sections for all sources)




Bias on dileptons detection from inclusive pp \rightarrow ppX is induced by the condition MDC0_secMult>=3 AND (TOF||RPC). Adding the condition OR MDC0_secMult==2 AND iTOF_pads>=3 to the trigger 5) can help.

From the simulations:

- \rightarrow hadronic background + dileptons (main sources η, ω, ρ, π^0 produced in RQMD)
- → meson decays into e+e- will be done in Pluto.

THANK YOU FOR YOUR ATTENTION

