

Σ^{0} PRODUCTION IN P-P COLLISION AT \sqrt{S} = 3.18 GEV

Hades Collaboration Meeting

March 9, 2021 | Waleed Esmail | Institut für Kernphysik (IKP) Forschungszentrum Jülich

An overview

Motivation

- Focus on exclusive reaction of $p + p \rightarrow p + K^+ + \Sigma^0$
- Results on Σ^0 are rare compared to Λ
- A step towards measuring radiative and Dalitz decays of excited state hyperons

Dataset

- Proton beam ($E_{kinetic}$ = 3.5 GeV) on Liquid hydrogen target
- 1.2 × 10⁹ LVL1 recorded events

Analysis summary

Signal reconstruction

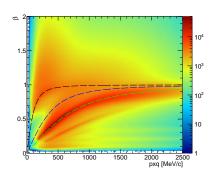
- Time of Flight reconstruction
- Deep Learning Based PID
- 3 Primary vertex reconstruction (POCA pK^+) -65 < z[mm] < -15 and r[mm] < 5
- **IDENTIFY and SET IDENTIFY** HADES dataset: Lambda Reconstruction AND $MM^2(p\Lambda)[GeV^2] > 0.2$
- **FWall dataset**: $MM^2(p\Lambda)[GeV^2] > 0.2$ **AND** $-0.02 < MM^2(pK^+\Lambda)[GeV^2] < 0.02$ **AND** Lambda Reconstruction
- Kinematic Refit

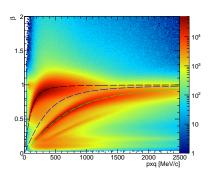
Time of Flight Reconstruction 1

Procedure

- HADES setup was not equipped with a start detector
- One particle at least has to be identified
- \blacksquare Negatively charged tracks are used to reconstruct the start time t_0
- If the track is not geometrically correlated to a ring in the RICH detector, it is assumed to be a π^- , otherwise it is assumed to be an e^-
- The start time t₀ for each event is calculated as the difference between the theoretical value and measured value.
- If more than one particle is used, then the start time is:

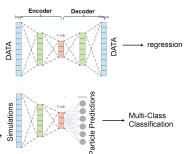
$$t_0 = \frac{\sum_i w_i \cdot t_{0,i}}{\sum_i w_i}$$


where $w_i = 2.5$ for ToF or $w_i = 1$ for ToFino systems



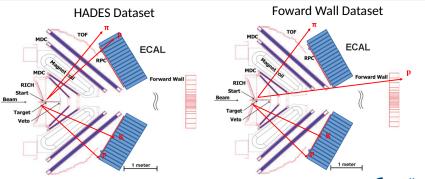
Time of Flight Reconstruction 2

■ β spectrum for all positive charged tracks q = 1Default t_0 Reconstructed t_0



Particle Identification PID

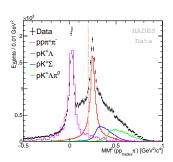
- A semi-supervised learning on Data and simulation simultaneously
- A neural network in a form of an Autoencoder
- Two output layers regression + classification
- Input features: momentum components, time of flight and energy loss
- Three output nodes corresponding to p, K^+ and π^+
- Classification accuracy of 98%, 78% and 92% for p, K^+ and π^+ respectively
- \blacksquare A β cut is applied: 0.5 < β < 1.2



Signal Reconstruction

Datasets

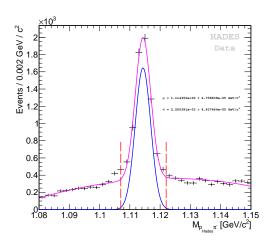
- HADES: Require 2p, $1K^+$ and $1\pi^-$ within HADES acceptance
- FWall: Require 1p, 1 K^+ and 1 π^- within HADES acceptance in addition to at least 1 hit in the FWall


HADES Dataset 1

- Define the primary vertex as the POCA of pK^+
- primary vertex longitudinal location cut -65 < z[mm] < -15
- primary vertex transverse location cut r[mm] < 5

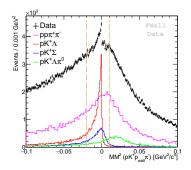
Lambda Selection

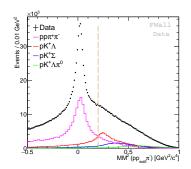
- MTD(p, π^-) < 10mm
- \blacksquare $d_{p,pvtx} < d_{\pi^-,pvtx}$
- $d_{\Lambda,pvtx}$ < 10mm
- $MM^2(p\Lambda) > 0.2[GeV^2]$



HADES Dataset 2

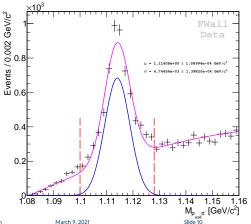
- Peak fitted with a Gauss and the background with a 3th order Polynomial
- \blacksquare 3 σ mass window is applied





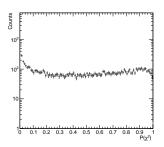
FWall Dataset 1

- $-0.02 < MM^2 (pK^+p_{wall}\pi^-)[GeV^2] < 0.01$
- $MM^2(pp_{wall}\pi^-)[GeV^2] > 0.2$

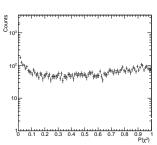


FWall Dataset 2

- Peak fitted with a Gauss and the background with a 3th order Polynomial
- Higher width compared to HADES dataset
- \blacksquare 3 σ mass window is applied



Kinematic Refit



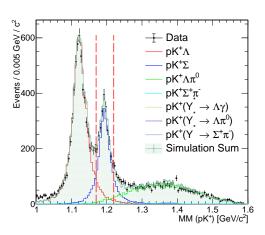
$$f = \begin{pmatrix} (E_{p_s} + E_{\pi})^2 - (P_{p_s} + P_{\pi})_x^2 - (P_{p_s} + P_{\pi})_y^2 - (P_{p_s} + P_{\pi})_z^2 - M_{\Lambda}^2 \\ (E_t + E_b - \sum_{i=1}^4 E_i)^2 - (\vec{p}_t + \vec{p}_b - \sum_{i=1}^{4n} \vec{p}_i)^2 - M_{\gamma}^2 \end{pmatrix} = 0$$

HADES

FWall

Apply 1% confidence level cut on both data sets

Final Spectrum 1


- A list of background channels have been simulated
 - $pK^+\Sigma$ (signal channel)
 - pK⁺Λ
 - $\blacksquare pK^+\Lambda\pi^0 pK^+\Sigma\pi^0$
 - \blacksquare $pK^+\Sigma^+\pi^-$
 - pK⁺Y*
- Simulations are scaled to match the data bin by bin, matching is quantified by χ^2 minimization:

$$\chi^2 = \sum_{bin} (\frac{n_{data} - (f^{ch} \times n_{simulation}^{ch})}{\sigma_{data} + \sigma_{simulation}})^2$$

Final Spectrum 2

■ A mass window 1.170 < $MM(pK^+)[GeV/c^2]$ < 1.220 is applied to select Sigma Like events with purity of 95%

Acceptance and Efficiency Correction 1

Correction Procedure

Data correction is based on solving the Fredholm Integral equation.

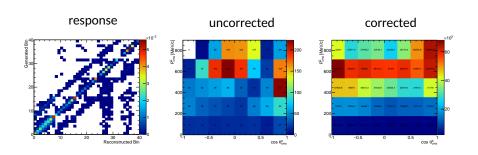
$$M(x) = \int R(x, x') T(x') dx'$$

where

M(x) is the measured distribution (detector level data)

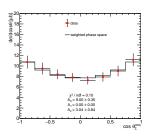
T(x) is the true distribution (stable particle level)

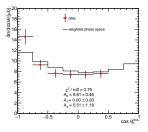
 \blacksquare R(x, x') is the response function (response matrix)

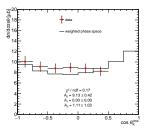

- The response matrix is built using 2 independent variables $cos\theta_{cms}$ and P_{cms}
- The response matrix is inverted using Singular Value Decomposition (SVD)

Acceptance and Efficiency Correction 2: $cos\theta_{\Sigma}^{cms}$ case

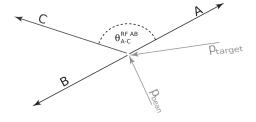
- $P_{\Sigma}^{cms} \times cos\theta_{\Sigma}^{cms} = 5 \times 8 \text{ bins} = 40 \text{ phase space bins}$
- Implantation in RooUnfold package


Unfolding algorithms and tests using RooUnfold, Tim Adye, arXiv:1105.1160, 2011



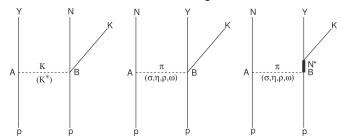

Angular Distributions: CMS Frames

■ Isotropic simulations are weighted by $cos\theta_{\Sigma}^{cms}$ and the Jackson angle in $p\Sigma$ rest frame to match the data



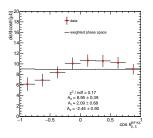
Helicity Angle Definition

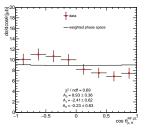
- The angle between the particles A and B in the Helicity frame (rest frame) of the particles B and C
- The helicity angle distribution is a special projection of the Dalitz plot

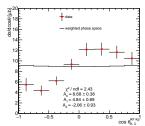


Gottfried Jackson Angle Definition

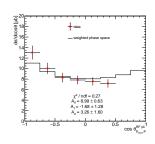
- Similar to the Helicity angle, also defined in the rest frame of two of the three particles
- Angle is defined as the angle between one of the rest frame particles and the initial proton
- In case of strange/non-strange meson exchange, the Jackson frame is equivalent to the rest frame of the exchanged meson

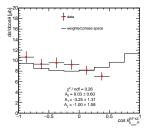

Production of Λ and Σ^0 hyperons in proton-proton collisions. COSY-TOF Collaboration, Eur.Phys.J.A46:27-44, 2010.

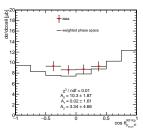



Angular Distributions: Helicity Frames 1

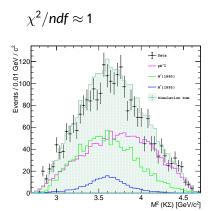
Phase space simulations is used for the correction


 Phase space simulations can not be used to describe Helicity angular distributions




Angular Distributions: Jackson Frames 1

■ Phase space simulations is used for the correction



Tuning the Simulation Model 1

■ A comparison between pure phase space and **phase space plus** N^* **intermediate resonances** using $M(K^+\Sigma^0)$ Dalitz variable

$$\chi^2/\text{ndf} \approx 3.7$$

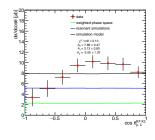
Tuning the Simulation Model 2

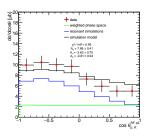
Simulation Model

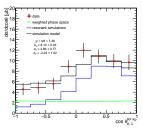
11
$$p + p \rightarrow p + K^+ + \Sigma$$
 22.5%

2
$$p + p \rightarrow p + (N^* \rightarrow K^+ + \Sigma)$$
 77.4%

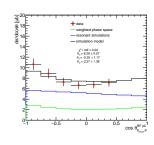
N* parameters taken from the PDG

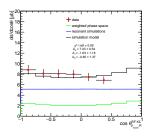

Resonance	Mass - Width	J ^P	BR (Σ <i>K</i>)	contribution
N(1875)	1875 - 200	3 -1 2	seen	0.0%
N(1880)	1880 - 300	1 1 2	10-24%	66.6%
N(1895)	1895 - 120	$\frac{1}{2}^{-1}$	6-20%	10.8 %
N(1900)	1920 - 200	3 2	3-7%	0.0 %

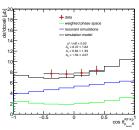



Angular Distributions: Helicity Frames 2

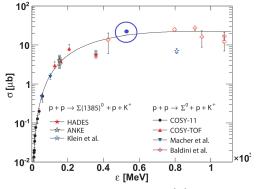
Correction is done using the tuned simulation model






Angular Distributions: Jackson Frames 2

Correction is done using the tuned simulation model



Total Production Cross Section:

- **pure phase space:** $\sigma_{\Sigma} = 17.9 \pm 0.37(stat) \pm 2.0(sys)\mu b$
- phase space + resonant: $\sigma_{\Sigma}=$ 15.9 \pm 0.33(stat) \pm 1.82(sys) μb

I. Zychor et al. Shape of the Λ (1405) hyperon measured through its $\Sigma^0 \pi^0$ decay. Phys.Lett., B660:167–171, 2008.

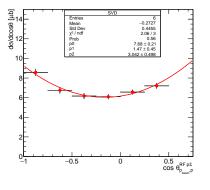
Conclusion and Outlook

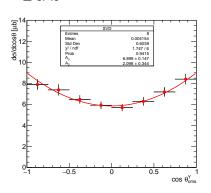
- First measurement of Σ^0 at 3.5 GeV beam energy
- Σ^0 production can not be described a pure phase space description
- N* resonant production is the dominant, however the interference effects are not taken into account
- FSI is not taken into account in the simulation model
- A step towards measuring radiative and Dalitz decays of excited states
- The study illustrates the importance of the forward detector especially for excited states

- An analysis note is in progress
- Future Plan: Partial Wave Analysis

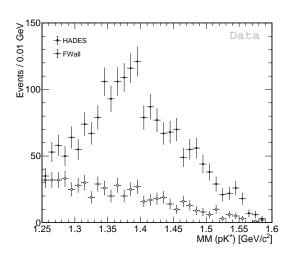
Acknowledgement

- Prof. Jim Ritman
- Dr. Tobias Stockmanns
- Prof. Piotr Salabura
- Dr. Rafal Lalik
- Dr. Peter Wintz
- Krzysztof Nowakowski
- Dr. Jochen Markert
- All my colleagues at the IKP
- Everyone who is kind to provide help

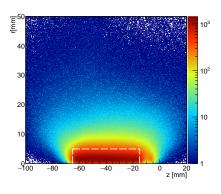

Thank you

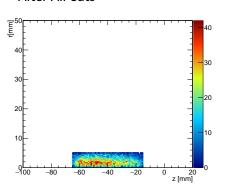

Backups: Isotropic Phase space weighting

Jackson Angle in $p\Sigma$ frame

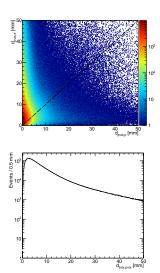

Σ CMS

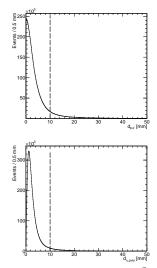
Backups: Enlargement of the resonance region



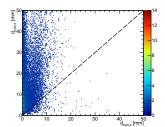

Backups: primary vertex distributions

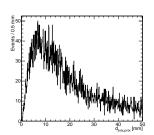
All Events

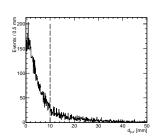

After All Cuts

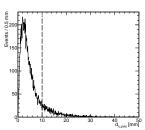


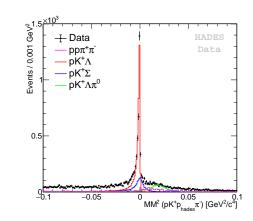
Backups: Lambda off-vertex variables for all events








Backups: Lambda off-vertex variables after all cuts



Backups: Missing Mass of all particles in the HADES dataset

