

Study of a PWA of the Ξ^+ Λ K^- Final State with PAWIAN

March 10th 2021 PANDA CM 21/1 Hyperon Session | Jenny Pütz

Motivation

panda

Partial Wave Analysis

- Up to know: worked on analysis of $\bar{p}p \to \bar{\Xi}^+ \Xi^{*-}$ with $\Xi^{*-} \to \Lambda K^-$ (& c.c.)
- Quantum number of most
 E resonances unknown or only estimated
- No experimental data and theoretical predictions
- PWA: possibility to determine those quantum numbers

Table 1. The status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

					Status	s as seen in	_
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
$\Xi(1318)$	1/2+	****					Decays weakly
$\Xi(1530)$	3/2 +	****	****				
$\Xi(1620)$		*	*				
$\Xi(1690)$		***		***	**		
$\Xi(1820)$	3/2-	***	**	***	**	**	
$\Xi(1950)$		***	**	**		*	
$\Xi(2030)$		***		**	***		
$\Xi(2120)$		*		*			
$\Xi(2250)$		**					3-body decays
$\Xi(2370)$		**					3-body decays
$\Xi(2500)$		*		*	*		3-body decays

*** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions,

etc. are not well determined.

** Evidence of existence is only fair.

* Evidence of existence is poor.

PDG2014

¹⁾ See plenary talk and talk in Hyperon Session at CM 18/3

What is PAWIAN?

- PArtial Wave Interactive ANalysis software
- Different spin formalisms and dynamics
- Event-based maximum likelihood fit (MINUIT2)
- Generates events based on user-defined decay model or on fit results obtained with real data

For further information: https://panda-wiki.gsi.de/foswiki/bin/view/PWA/PawianPwaSoftware

Work Done In The Past

Until CM 20/3

Investigations on

- Single resonance channel (£(1690) & £(1820) -):
 - $L_{\text{max}} = 2.3$; Fit of 30,000 events
 - ➤ Input values were reconstructable
- Data Sample with crossed channel $(\bar{p}p \to \bar{\Lambda} (1890) \Lambda)$:
 - $\succ L_{\text{max}} = 1$; Fit of 30,000 events
 - ➤Only 7% of events were E resonances
- First tests for single resonances using PAWIAN and PandaRoot

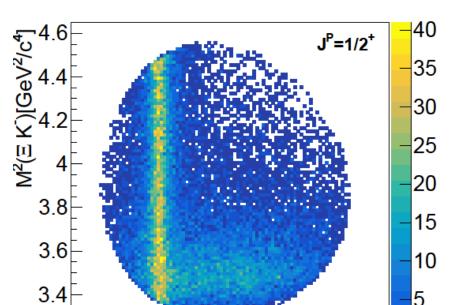
JÜLICH Forschungszentrum

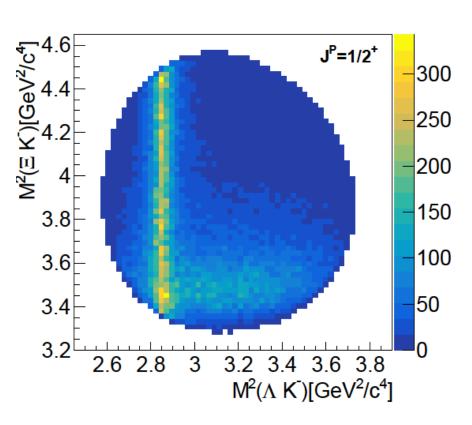
What is New?

- Crossed channel: 50% contribution for E resonances generated
- Finished investigations of single resonances using PAWIAN and PandaRoot
- Study of a sample with $\Xi(1690)^-$ AND $\Xi(1820)^-$

How are Results Compared?

- Different criteria used: BIC and AIC
- BIC: Bayesian information criterion
 - model selection among a finite set of models
- AIC: Akaike information criterion
 - Estimates quality of model relative to set of models
- In both cases, model with lowest value is preferred
- Final selection based on : $\Delta AIC = AIC_i AIC_{min}$
- $\Delta AIC < 2$: evidence for the model; $\Delta AIC > 10$: model unlikely
- Special case: AIC and BIC show different tendencies => AIC+BIC


Crossed Channel


$\Xi(1690)^{-}$

Fit Results

 $\overline{\Lambda}$ (1890): $\Gamma \approx 120 \text{ MeV/c}^2 J^P = 3/2^+$

3.2 3.4 3.6 3.8

 $M^2(\Lambda K)[GeV^2/c^4]$

2.8

3.2

2.6

Results

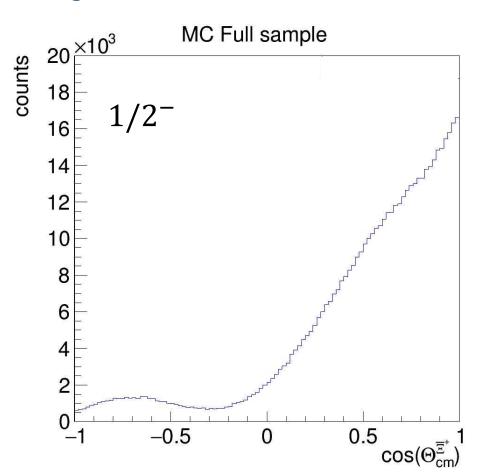
$\Xi(1690)^ \Delta$ AIC Values 30,000 Events

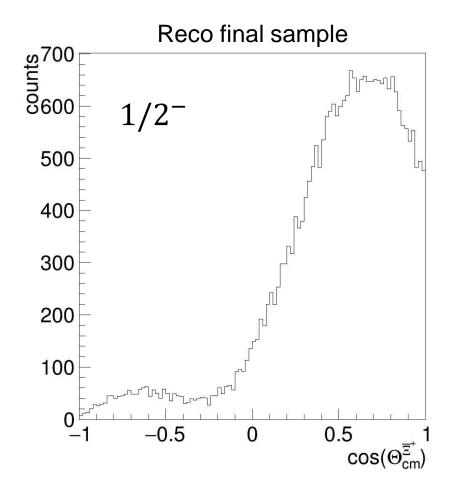
Fit → Gen ↓	/2		3/2+	3/2
1/2+	0.0	42.6	35.6	103.2
1/2	84.2	0.0	102.8	378.4
3/2+	1,598.6	3,195.4	0.0	175.8
$3/2^-$	1,908.5	2,132.6	840.1	0.0

Results

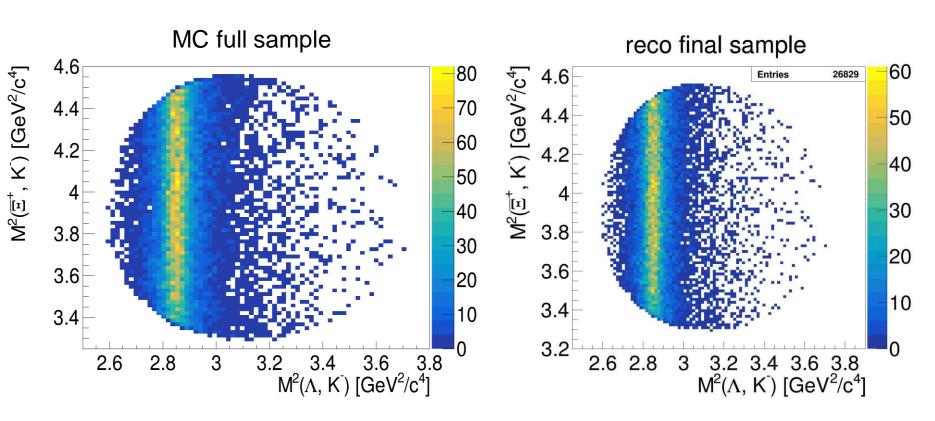
$\Xi(1820)^ \Delta$ AIC Values 30,000 Events

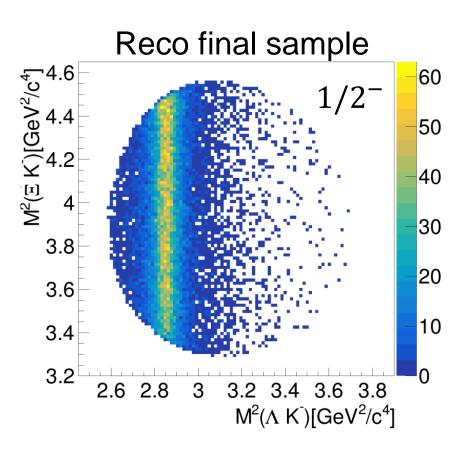
Fit → Gen ↓	\sim /2		3/2+	3/2
1/2+	0.0	56.5	49.1	48.8
1/2	24.6	0.0	41.0	11.5
3/2+	1,075.6	1,054.9	0.0	42.5
$^{3}/_{2}^{-}$	1,417.8	1,443.2	124.8	0.0

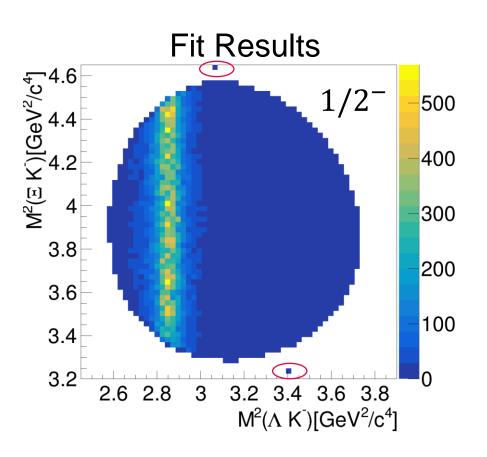

Simulations


- Generated ~600,000 events for both Ξ(1690)⁻ & Ξ(1820)⁻ with PAWIAN included event generator
- Used as input for the full sim + reco chain in PandaRoot
- ~26,000 events reconstructed in analysis with DecayTreeFitter
- Reconstructions efficiency: 5%
- Fraction of pure signal events: 94.2%

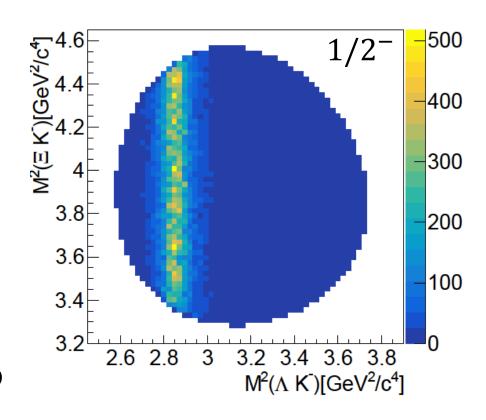
Angular Distribution $\overline{\Xi}^+$ in center-of-mass Frame




Dalitz Plots $\Xi(1690)^-$



Dalitz Plots E(1690)



Mass Window Selection

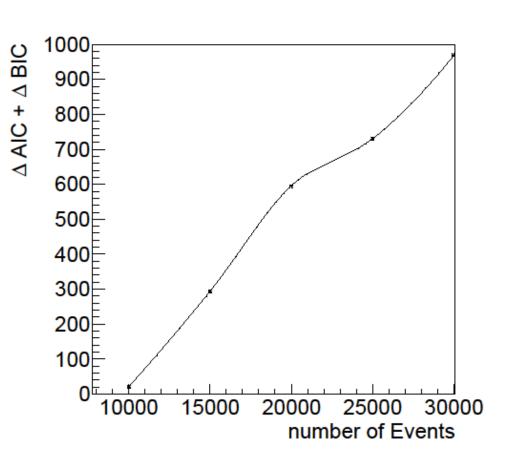
- Outliers caused by ±̄+ mass far off nominal mass after DTF of continuum sample
- Additional mass window selection: $(1.319 < M_{\Xi} < 1.323) \, GeV/c^2$
- Removes all outliers in continuum sample and up to 3 signal events

 $\Xi(1690)^- \Delta AIC Values (PandaRoot+ PAWIAN)$

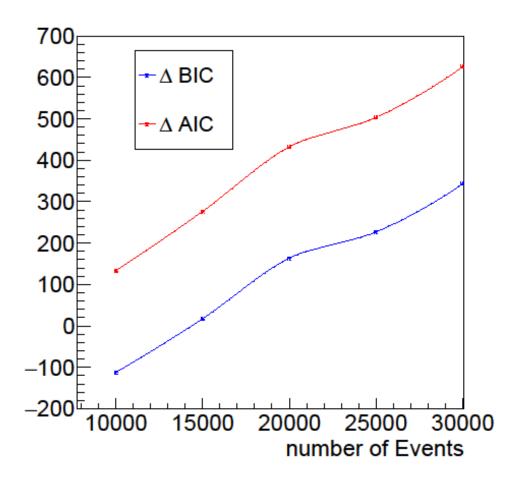
Fit → Gen ↓	1/2+	1/2	3/2+	3/2
1/2+	0.0	2,550.6	2,310.6	2,706.8
1/2	316.7	0.0	328.2	2,332.2
3/2+	4,973.9	5,228.0	0.0	584.6
$3/2^-$	5,345.6	3,118.6	833.1	0.0

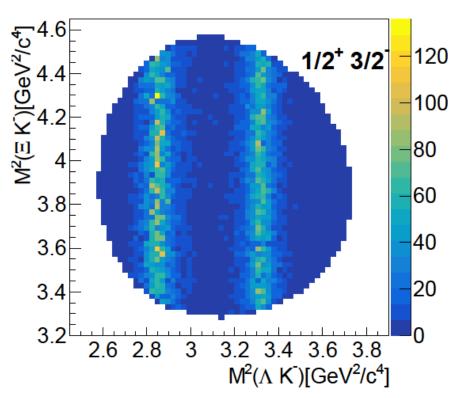
 $\Xi(1820)^-$ AIC + BIC Values (PandaRoot+ PAWIAN)

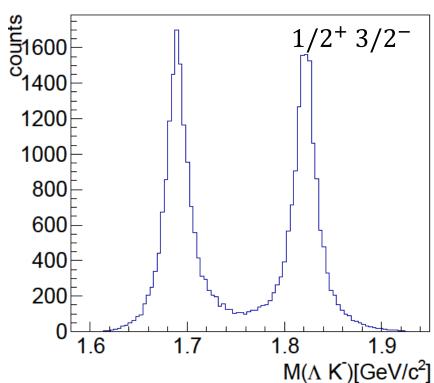
Fit → Gen ↓	1/2+	1/2	3/2+	3/2
1/2+	-133,352.4	-133,121.5	-133,193.7	-133,144.3
1/2	-130,496.3	-130,593.1	-130,382.0	-129,705.7
3/2+	-119,599.4	-119,468.2	-127,072.7	-126,874.3
3/2	-132,767.8	-133,484.6	-139,895.2	-140,385.4


$\Xi(1690)^{-}$ and $\Xi(1820)^{-}$ Sample

Event Generation and Fit Results Ideal Case

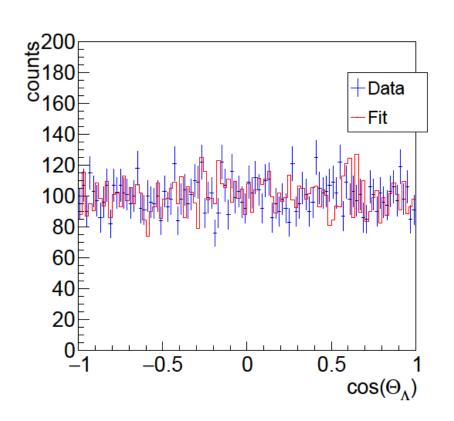

- Generated 10,000 events only $J^P(\Xi(1690)) = 1/2^+$ and $J^P(\Xi(1820)) = 3/2^-$
- Fitted with all possible combinations
- 1/2⁺ 1/2⁻ can not be safely excluded
- How much statistics needed to exclude it?

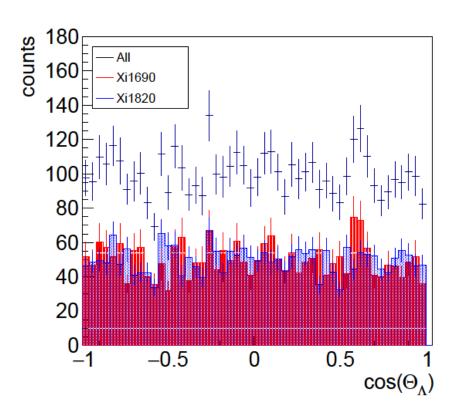

Event Generation and Fit Results Ideal Case



panda

Dalitz Plot and Mass Distribution





CosΘ distribution of Λ from ΛK^- System in Helicity Frame

Summary & Outlook

- Performed test to reproduce quantum numbers
- "Single" resonances & crossed channel: promising
- PandaRoot & PAWIAN:
 - in good agreement with feasibility study
 - Input QN can be reproduced
- Combined Sample: first test with 10,000 events leads to promising results -> more statistics needed
- Verify results for combined sample with other QN
- PandaRoot & PAWIAN should be used for combined sample
- Same tests should be done for charge conjugate particles

Summary & Outlook

- Performed test to reproduce quantum numbers
- "Single" resonances & crossed channel: promising
- PandaRoot & PAWIAN:
 - in good agreement with feasibility study
 - Input QN can be reproduced
- Combined Sample: first test with 10,000 events leads to promising results -> more statistics needed

Release note under review and paper in preparation

Backup

Results

 $\Xi(1690)^- \Delta AIC Values$

Fit → Gen ↓	/2		3/2+	3/2
1/2+	0.0	310.0	23.0	347.0
1/2	274.0	0.0	281.0	2,256.0
3/2+	60,320.7	4,861.9	0.0	503.9
3/2	81,128.3	25,893.9	19,541.6	0.0

First fit with fixed mass and width

Results

$\Xi(1820)^ \Delta AIC$ Values

Fit → Gen ↓	/2		3/2+	3/2
1/2+	0.0	46,427.9	3.9	35,374.6
1/2	72.9	0.0	40,135.0	446.6
3/2+	3,911.2	3,969.3	0.0	36,377.4
3/2	3,457.7	3,698.0	201.0	0.0

Strategy

- Is it possible to reconstruct the input values?
- Event Generation:
 - 1 data set for $\overline{\Xi}\Lambda K^-$
 - 1 data set for each resonance
- $p_{\bar{p}}$ = 4.6 GeV/c
- Different quantum numbers generated for $\Xi(1690)^-$ and $\Xi(1820)^ \frac{1}{2}^-, \frac{1}{2}^+, \frac{3}{2}^-, \frac{3}{2}^+$
- Fit all hypotheses to each generated data set
- At later stage: included crossed channel $\bar{p}p \rightarrow \bar{\Lambda}(1890)\Lambda$

BIC and AIC

Bayesian information criterion (BIC):

is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred.

$$BIC = 2 \cdot (-LHH) + k \cdot \ln(n)$$

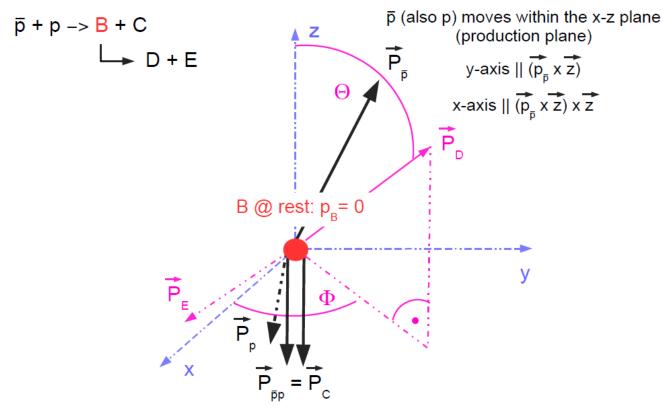
with LHH: maximal loglikelihood value, k: number of free fit parameters and n: number of events in the sample

Akaike information criterion (AIC):

is a measure of the relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models

$$AIC = 2k + 2 \cdot (-LLH)$$

Event Generation


Maximum Angular Momentum of $\overline{p}p$

- Beam momentum of 4.6 GeV/c² corresponds to a momentum in center-of-mass frame of:
 - $p_{\rm cm} \approx 600 \, {\rm MeV/c} \, {\rm for} \, \Xi (1690)^- \to L_{\rm max} = 3$
 - $p_{\rm cm} \approx 410 \ {\rm MeV/c} \ {\rm for} \ \Xi(1820)^- \rightarrow L_{\rm max} = 2$

Helicity Frame

 $\bar{p}p$ system and C move with same momenta in the negative direction of the z-axis $(p_{\bar{p}p} = p_B + p_C)$

Image from Bertram Kopf

Gottfried-Jackson Frame

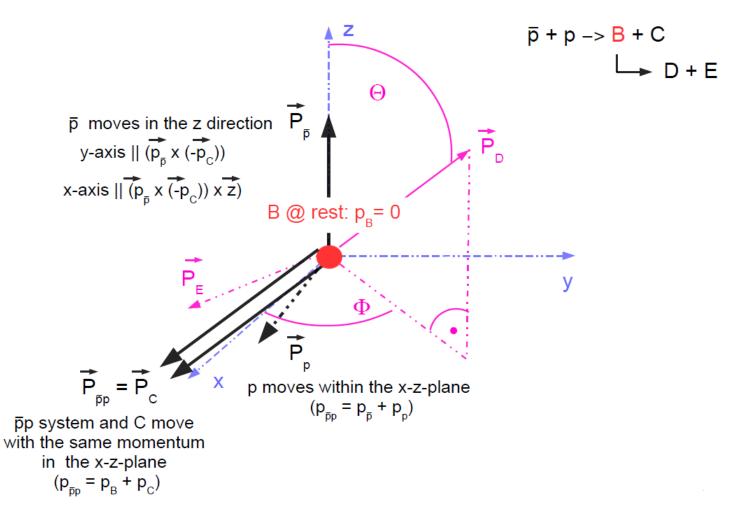


Image from Bertram Kopf

