

About new data and BESIII individual determination of time-like form factors

Egle Tomasi-Gustafsson CEA, IRFU, DPhN et Université Paris-Saclay, France

> Simone Pacetti INFN e Università di Perugia,Italia

> Andrea Bianconi INFN e Università di Brescia,Italia

> > ArXiv: nucl-th / 2012.145656, to appear in Phys Rev. C

PANDA Coll. Meeting, EM Session, March 9, 2021

Proton Charge and Magnetic Distributions

Egle Tomasi-Gustafsson

CMS Cross section of $e^+e^- \rightarrow p\overline{p}$

$$\frac{d\sigma_{e^+e^- \to \bar{p}p}}{d\Omega}(s,\theta) = \frac{\alpha^2 \beta \,\mathcal{C}(\beta)}{4s} \left[\left(1 + \cos^2(\theta)\right) |G_M(s)|^2 + \frac{1}{\tau} \sin^2(\theta) |G_E(s)|^2 \right]$$

A. Zichichi, S. Berman, N. Cabibbo, and R. Gatto, Nuovo Cim. 24, 170 (1962).

Coulomb factor

 $\tau = s/(4m_p^2)$

- effective within < 1 MeV
- insures finite cross section at threshold
- not present in the time reverse reaction

 $\beta = \sqrt{1 - 1/\tau}$ is the proton velocity

Assumes one-photon exchange : $\cos^2\theta - even$

Oscillations

- Recent and precise data on the proton time-like form factors show a systematic sinusoidal modulation in the near-threshold region.
- The relevant variable is the momentum *p* associated to the relative motion of the final hadrons.
- The periodicity and the simple shape of the oscillations point to a unique interference mechanism, which occurs when the hadrons are separated by about 1 fm.
- The hadronic matter is distributed in non-trivial way.
- The oscillation period corresponds to hadronic-scale
 - scaling-violating parameter

The Time-like Region

A.Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Cea

Oscillations : regular pattern in PLab

The relevant variable is p_{Lab} associated to the relative motion of the final hadrons.

A.Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Fourier Transform

- Rescattering processes
- Large imaginary part
- Related to the time evolution of the charge density? (E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240)
- Consequences for the SL region?
- Data from BESIII, expected from PANDA

Cez

Confirmation of regular oscillations

$$F_p^{\text{fit}}(s) = F_{3p}(s) + F_{\text{osc}}(p(s))$$

$$F_{3p}(s) = \frac{F_0}{\left(1 + \frac{s}{m_a^2}\right) \left(1 - \frac{s}{m_0^2}\right)^2},$$

$$F_{osc}(p(s)) = Ae^{-Bp} \cos(Cp + D).$$

$$s = 2m_p \left(m_p + \sqrt{p^2 + m_p^2} \right) ,$$

$$p = \sqrt{s \left(\frac{s}{4m_p^2} - 1 \right)} .$$

Cea

Monopole Fit

Ref.	Exp.	N	F_0	$m_a^2~({ m GeV^2})$
[3, 5, 12]	BaBar	85	7.7 ± 0.3	15 ± 1
[3-6]	BaBar,BESIII-ISR,BESIII-SC	107	8.9 ± 0.2	8.8 ± 0.6
	_			

Damped Oscillatory Function

Ref.	Data set	$A \pm \Delta A$	$B \pm \Delta B$	$C \pm \Delta C$	$D \pm \Delta D$	$\chi^2/n.d.f$
			$({\rm GeV^{-1}})$	$({\rm GeV^{-1}})$		
[3, 5, 12]	BaBar	0.05 ± 0.01	0.59 ± 0.2	5.6 ± 0.1	0.2 ± 0.2	57/(55-4) = 1.1
[3-6]	BESIII-ISR,SC,BaBar	0.07 ± 0.01	0.93 ± 0.09	5.9 ± 0.1	0.1 ± 0.2	227/(107-4)=2.2

6-parameter Fit

Ref.	F_0	m_a^2	Α	В	C	D	$\frac{\chi^2}{\text{n.d.f.}}$
		$({ m GeV}^2)$		$({\rm GeV}^{-1})$	$({\rm GeV}^{-1})$		
[3-6, 11]	9.7 ± 0.3	7.1 ± 0.5	0.073 ± 0.007	1.05 ± 0.07	5.51 ± 0.09	0.04 ± 0.1	$\frac{278}{118 - 6} = 2.5$

Threshold physics

VEPPII, Novosibirsk

- The beam energy is measured at 0.1 MeV precision (back scattering laser light system).
- The energy spread due to radiation and energy resolution is small enough to differentiate the proton and neutron thresholds.

$$\sigma_{\text{Born}}(\text{E}_{\text{c.m.}}) = \text{A} + \text{B}\left[1 - \exp\left(-\frac{(\text{E}_{\text{c.m.}} - \text{E}_{\text{thr}})}{\sigma_{\text{thr}}}\right)\right]$$

10

Point-like form factors?

BABAR: $e^+e^- ightarrow p\overline{p}$

EPJA39, 315

Cross section from $e^+e^- \rightarrow p\overline{p}$

Novosibirsk 38pt 1.9<2E<4.5 *PLB794,64 (2019)*

BaBar 85pt 1.9<2E<4.5 PRD87,092005 (2013)

ISR-ISR-SA 30pt 2<2E<3.6 *PRD99,092002 (2019)*

ISR-Scan 22pt 2<2E<3.1 *PRL124,042001 (2020)*

Total Cross Section from $e^+e^- \rightarrow \overline{p}p$

$$\sigma_{e^+e^- \to \bar{p}p}(s) = \frac{4\pi\alpha^2\beta \,\mathcal{C}(\beta)}{3s} \left(|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2 \right)$$

- Effective FF: $\sigma_{\text{Tot}} \sim F_p^{-2}$ $F_p(s)^2 = \frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}$
 - Equivalent to:

$$|G_E(s)| = |G_M(s)| \equiv F_p(s)$$

Strictly valid at threshold, where only one amplitude is present

Generalized Form Factor

PHYSICS

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION

Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968 Original article submitted February 26, 1967

M.P. Rekalo (1938-2004)

$$s_{2} \frac{d\sigma}{d\Omega_{R}} = 4p_{2} \frac{(s \cdot q)}{1 + \tau} \Gamma (\theta, \epsilon_{1}) \left[\tau G_{M} (G_{M} + G_{E}) - \frac{1}{4\epsilon_{1}} G_{M} (G_{E} - \tau G_{M}) \right],$$

A.I. Akhiezer (1911-2000)

The polarization induces a term in the cross section proportional to $G_E G_M$ *Polarized beam and target or polarized beam and recoil proton polarization*

Egle Tomasi-Gustafsson

Polarization experiments @ JLab

A.I. Akhiezer and M.P. Rekalo, 1967

GEp collaboration

- 1) "standard" dipole function for the nucleon magnetic FFs GMp and GMn
- 2) linear deviation from the dipole function for the electric proton FF Gep
- 3) QCD scaling not reached
- 3) Zero crossing of Gep?
- 4) contradiction between polarized and unpolarized measurements

.J.R. Puckett et al, PRC 96, 055203 (2017)

Form Factor Ratio R=|GE|/|GM|

- Precise data from BESIII
- Dip at |q²|~5.8 GeV²
- Comparison with SL (Jlab-GEp data)
- Oscillations on top of a monopole: from GE or GM?

$$F_R(\omega(s)) = \frac{1}{1 + \omega^2/r_0} \left[1 + r_1 e^{-r_2 \omega} \sin(r_3 \omega) \right], \ \omega = \sqrt{s} - 2m_p,$$

Angular Asymmetry

Cea

Sachs form factors: |G_E|, |G_M|

From the fit on Fp and the fit on R, the Sachs FFs (moduli) can be reconstructed

$$|G_E(s)| = F_p(s) \sqrt{\frac{1+2\tau}{R^2(s)+2\tau/R^2(s)}}$$
$$|G_M(s)| = F_p(s) \sqrt{\frac{1+2\tau}{R^2(s)+2\tau}}.$$

Threshold constrain R=1 for τ =1 The fit gives : $|G_E| = |G_M| = 0.48$

Models

Parametrizations have been determined by fitting Fp

|GE|: more pronounced oscillations faster q²-decrease

Threshold constrain R=1 for τ =1 The fit gives : $|G_E| = |G_M| = 0.48$

pQCD : 0.34 VDM-IJL : 0.29

Cea

The nucleon

3 valence quarks and a neutral sea of $q\overline{q}$ pairs

antisymmetric state of colored quarks

 $|p \rangle \sim \epsilon_{ijk} |u^{i}u^{j}d^{k} \rangle \\ |n \rangle \sim \epsilon_{ijk} |u^{i}d^{j}d^{k} \rangle$

Main assumption

Does not hold in the spatial center of the nucleon: the center of the nucleon *is electrically neutral,* due to the strong gluonic field

E.A. Kuraev, E. T-G, A. Dbeyssi, Phys.Lett. B712 (2012) 240

Definition of TL-SL Form Factors

$$F(q^2) = \int_{\mathcal{D}} d^4 x e^{iq_\mu x^\mu} \rho(x), \ q_\mu x^\mu = q_0 t - \vec{q} \cdot \vec{x}$$

TL_

0000

 $e \rightarrow$

time >

p

 $\rho(x) = \rho(\vec{x}, t)$ space-time distribution of the electric charge in the space-time volume \mathcal{D} .

SL photon 'sees' a charge density

TL photon can NOT test a space distribution

How to connect and understand the amplitudes?

$\rho(x)$ in the space-like region

and in the Breit frame or at small x:

density	Form factor	r.m.s.	comments
ho(r)	$F(q^2)$	$ < r_c^2 >$	
δ	1	0	pointlike
e^{-ar}	$\frac{a^4}{(q^2+a^2)^2}$	$\frac{12}{a^2}$	dipole
$\frac{e^{-ar}}{r}$	$\frac{a^2}{q^2 + a^2}$	$\frac{6}{a^2}$	monopole
$\frac{e^{-ar^2}}{r^2}$	$e^{-q^2/(4a^2)}$	$\frac{1}{2a}$	gaussian
ρ_0 for $x \leq R$	$\frac{3(\sin X - X\cos X)}{X^3}$	$\frac{3}{5}R^2$	square well
0 for $r \ge R$	X = qR		

Photon-Charge coupling

Amplitude for creating *charge-anticharge pairs* at time *t*

Conclusions

- New, precise data on time-like form factors and first determination of individual FFs (|G_E| and |G_M|)
- New data on *FFs ratio* and *angular asymmetry*
- *FFs ratio:* damped oscillations around a monopole decrease
- Oscillations more pronounced in $|G_E|$.
- Origin of oscillatory phenomena ? Di-quark as a necessary step towards hadron creation?
- Time reversal holds for 'elastic' annihilation channels: are the two channels really equivalent in the whole q²-region?

26

Thank you for your attention