# Language Model Training with STT Toy Data Generator Jakapat Kannika 

Toy Data Generator for STT

Simulation frame

find_circle_center( $x_{0}: 7.8$, phi: 34.4, $\left.r:-39.2\right) \longrightarrow(-24.6,-22.2)$


find_circle_center $\left(x_{0}: 6.2, p h i:-37.7, r: 111.1\right) \longrightarrow(94.1,-68.0)$


find circle center $\left(x_{0}: 6.2\right.$, phi: $\left.-37.7, r: 111.1\right) \longrightarrow(94.1,-68.0)$


Positions: [
[6.0, 0.0], [6.5, 0.9], [7.5, 0.9], [7.0, 1.7], [8.0, 1.7], [8.5, 2.6], [9.0, 3.5], [9.5, 4.3], [10.0, 5.2], [11.0, 5.2], [11.5, 6.1], [12.0, 6.9], [12.5, 7.8], [13.5, 7.8], [13.0, 8.7], [14.0, 8.7], [14.5, 9.5]]

## Tracking features

Moving directions: [
60, 0, 120, 0, 60, 60, 60, 60, 0, 60, 60, $60,0,120,0,60]$

Neighbor patterns: [
[1, 41, 7, 56, 13, 41, 25, 9, 40, 5, 11, $13,41,7,56,13,8]$

## Language Model



A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length $m$, it assigns a probability $P\left(w_{1}, \ldots, w_{m}\right)$ to the whole sequence.*

Moving directions:
$60,0,120,0,60,60,60,60,0,60,60,60,0,120,0,60$

| Pattern | Count | Prob. |
| :--- | :--- | :--- |
| $60,0,120,0$ | 2 | 1.00 |
| $0,120,0,60$ | 2 | 1.00 |
| $120,0,60,60$ | 1 | 1.00 |
| $0,60,60,60$ | 2 | 1.00 |
| $60,60,60,60$ | 1 | 0.33 |
| $60,60,60,0$ | 2 | 0.66 |
| $60,60,0,60$ | 1 | 0.50 |
| $60,0,60,60$ | 1 | 1.00 |
| $60,60,0,120$ | 1 | 0.50 |



## Current training models

- Training feature: moving directions,
- Language models: 5-gram, 10-gram, 15-gram models,
- Sizes of simulation frames: $15 \times 15,20 \times 20,25 \times 25$ tubes
- Noise: 0 noise hit.


## Optimize training speed using halton sequence



Pseudorandom


Halton sequence


5-gram model


10-gram model

## Check distributions of hits

Simulation frame:

- Width = 15 tubes,
- Height $=15$ rows .

Training language model:

- 5-gram model for moving directions.

Number of generating data:

- 142,260 hits (10,000 tracks)
- 0 noise hit.

Distributions of hits vs. parameters for generating track

$x 0=$ random.uniform $(3,11)$



phi $=$ random.uniform(-1 * math.pi / 3.0, math.pi / 3.0)


$\mathrm{a}=$ random.uniform $(0.001,0.1)$ $r=$ random.choice $([-1,1])$ * (1 / a)


## Check distribution of new patterns

Simulation frame:

- Width = 15 tubes,
- Height $=15$ rows .

Training language model:

- 5-gram model for moving directions.

Number of generating data:

- $\sim 141,982$ hits (10,000 tracks)
- 0 noise hit.

$x 0=$ random.uniform $(3,11)$



phi $=$ random.uniform(-1 * math.pi / 3.0, math.pi / 3.0)


$r=$ random.choice $([-1,1])$ * random.uniform $(10,1000)$

$\mathrm{a}=$ random.uniform(0.001, 0.1)
$r=$ random.choice $([-1,1])$ * (1/a)

r = random.choice([-1, 1]) * random.uniform(10, 1000)


## Check for a bottleneck in the data generation

Simulation frame:

- Width $=15$ tubes,
- Height $=15$ rows .

Training language model:

- 3-gram model for moving directions.

Number of generating data:

- $\sim 4,000,000$ hits
- 0 noise hit.



## Summary and outlook

## Summary:

- The new toy data generator can generate data with the geometry similar to the STT,
- The generator can produce consistent patterns that can be used in language model training,
- Feature extractors for moving directions and neighbor patterns are available for the new geometry,
- Slow in speed of training could be caused by a bottleneck in the data generation.

Outlook:

- Finish language model training for moving directions and neighbor patterns,
- Implement isochrone radius for the new data generator.

