

Online event building and filtering

Viktor Rodin

Myroslav Kavatsyuk

ESRIG, University of Groningen

PANDA CM 21/1

Main goal

Complete event building and event filtering in the PandaRoot corresponding to the future DAQ system.

Presented in the previous collaboration meeting:

- Event mixing procedure
- Time-gap event building

Main goal

Complete event building and event filtering in the PandaRoot corresponding to the future DAQ system.

What was planned for this meeting:

- Investigate the event "scrambling"
- Implement time-ordered data flow for the EMC clusters and PndTracks
- Implement time-gap event building for the EMC clusters and PndTracks
- Implement event filtering and investigate its performance

Main goal

Complete event building and event filtering in the PandaRoot corresponding to the future DAQ system.

What was planned for this meeting:

- Investigate the event "scrambling"
- Implement time-ordered data flow for the EMC clusters and PndTracks
- Implement time-gap event building for the EMC clusters and PndTracks
- Implement event filtering and investigate its performance

Triggerless DAQ system

PANDA Physics

Benchmark channels for the DAQ

1)
$$ar p p o \Lambda^0 (o p \pi^-) ar \Lambda^0 (o ar p \pi^+)$$
 at E $_{ ext{cm}}$ = 2.304 GeV.

Study of hyperon spin observables for probing QCD in the confinement domain

2)
$$\bar{p}p \to J/\psi(\to e^+e^-)\pi^+\pi^-$$
 at E_{cm}= 3.872 GeV. Study of charmonium exotic candidate X(3872)

3)
$$\bar{p}p \rightarrow e^+e^-$$
 at E_{cm}= 2.256 GeV.

Study of electric and magnetic form factors of the proton in the time-like region

3)
$$ar p p o e^+ e^- \pi^0 (o \gamma \gamma)$$
 at E $_{ ext{cm}}$ = 2.256 GeV.

In addition to previous one, this reaction allows to study time-like form factors of the proton below the threshold of the proton pair production of $(2M_p)^2$

Main requirement: A reasonable efficiency after background suppression.

Time-gap event building in a nutshell

It is based on the time difference between adjacent hits

It performs well as long as a time difference between events is big

Picture is taken from Tobias Stockmanns' presentation.

Simulation workflow

Monte-Carlo information

Generate two files with:

1. **SIGNAL** – 1000 events at 6.2315 GeV/c, EvtGen:

2. **BACKGROUND** – 2000 events at 6.2315 GeV/c, FTF generator:

(all possible inelastic reactions, respecting cross-section)

Monte-Carlo information (VIRGO)

Generate two files with:

1. SIGNAL -10^5 (100 per seed) events at 6.2315 GeV/c, EvtGen:

2. **BACKGROUND** – 10⁶ (1000 per seed) events at 6.2315 GeV/c, FTF generator:

(all possible inelastic reactions, respecting cross-section)

Digitization

Event-based

- generation of analogue signals
- digitization of analogue signals
 - no overlap possibility
 - no time sorting
 - isolated events

Digitization

Time-based

- generation of analogue signals
- digitization of analogue signals
- overlap possibility (TWO Buffers)
 - time sorting (Ring Sorters)
 - time-ordered stream

Timebunch creation

- processing digi-bunches by the time-gap builder
- clustering&tracking, within created timebunches
- cluster&track sorting
- processing tracks&cluster bunches by the timegap builder

Simulation workflow

Possible imperfections of the time-gap method

Event-based study (Signal)

Time-difference distribution between adjacent-in-time hits if all events are used

Event "smearing" effect

Possible imperfections of the time-gap method

Event-based study (Signal)

Mother ID and its PDG particle with dt >20 ns

Potential danger of event "granulation"!

Possible imperfections of the time-gap method

Event-based study (Signal)

Length = #entries

Relative position = Index / Length

Timegap position for EMC

Counts **Entries** 1007 Integral 1007 60 50 40 30 0.9 0.8 Relative position

Timegap position for STT

Event cutting with time-gap Event-based study (Signal) dt = 20 ns

Considerable amount of events with a time-gap(-s)

NofGaps

10

Event cutting with time-gap Event-based study (Signal)

dt = 40 ns

Trade between event mixing and event "granulation"

NofGaps

Time-based Simulation

Time-based

- generation of analogue signals
- digitization of analogue signals
- overlap possibility (TWO Buffers)
 - time sorting (Ring Sorters)
 - time-ordered stream

Time-gap event builder algorithm

Time duration of event Signal (STT)

Time = $T_{end} - T_{0}$

Event-based

Time-based 40ns

Higher number of events due to the event "granulation" effect

Time duration of event Signal (EMC)

Time = $T_{end} - T_{0}$

Event-based

Time-based 40ns

Same picture for EMC clusters

Time difference for tracks and clusters

After time-gap EB (dt = 40 ns)

Time-difference distribution between adjacent-in-time tracks&clusters

BarrelTrack

EmcCluster

Time duration of track&cluster events

After time-gap EB (dt = 40 ns)

Time = $T_{end} - T_{0}$

BarrelTrack

EmcCluster

And Clusters

Time-gap EB for clusters&tracks

ΔT Builder Macro Correlated digi and cluster&track timebunches have different entry numbers TimeGap Clustering Correlated Timebunches Builder &Tracking Tracks&Clusters Diai event asigning Cluster&Track Entry with Each track or cluster keeps a number of the Sorted Clusters&Tracks Sorters digi timebunch, from which it was created Entry Digi Arrays: Entry Track&Cluster Arrays: MVD Srt. Hits Srt. Barrel Tracks STT Srt. Hits Srt. EMC Clusters GEM Srt. Hits Srt. Muon Tracks Srt. FTS Tracks EMC Srt. Digis **MdtTracks** MDT Srt. Hits **EmcClusters** FTS Srt. Hits Correlation&PID macro Kalman filter macro **AT Builder Macro 2** Barrel&FTS **Timebunches** Barrel& PndPid GenTracks FTS Correlated Barrel& Candidates Clusters&Tracks timebunches **MdtTracks** FTS Tracks **GenTracks**

Offline analysis

J/psi mass(all): Invariant mass distribution for the J/psi candidates. Only charge condition is applied.

$$Ev_{sig}/Ev_b = 1$$

Total number = 2000

Event-based (Sum)

J/ψ mass (all)

Time-based (Time-Gap)

Offline analysis

J/psi mass(all) : Invariant mass distribution for the J/psi candidates. Only charge condition is applied.

> $EV_{sig}/EV_b = 1/9$ Total number = 1000000

Event-based (Sum)

J/ψ mass (all) Total Entries 2410470 Signal Background 10³ 10³ 10² 10² 10 10 10^{-1} 3.5

Time-based (Time-Gap)

J/ψ mass (all)

J/psi mass(tight pid) : Invariant mass distribution for the J/psi candidates when Pnd Candidate is muon with probability higher then 50%

> $Ev_{sig}/Ev_b = 1/9$ Total number = 1000000

Event-based (Sum)

J/ψ mass (tight pid)

Time-based (Time-Gap)

J/ψ mass (tight pid)

Discrepancy between EB and TB simulation. How big is it?

Comparison by integration in the J/psi region

This difference is caused by granulation effect and event mixing

Event Filtering

Event Filtering Event-based (Signal)

Most events pass through the filter (except the miss-reconstructed ones)

Event Filtering Event-based (Background)

Suppression ≈ 1000

Event Filtering

Offline analysis with online filtering

Event-based (Sum)

Time-based (Time-Gap)

Offline analysis with online filtering

Offline analysis with online filtering

Comparison With and w/o online filtering

Time-based (Time-Gap)

Slight suppression if PID is required

Comparison of EB and TB with filter

J/ψ mass (tight pid)

Further optimisation is still needed!

Summary

- Framework for event building and event filtering was developed in the PandaRoot
- Performance of the framework was studied by comparing with eventbased simulation
- Further optimisation of framework parameters is required for better performance
- Rest of the benchmark channels still has to be studied using this framework

Event Filtering

Results of the offline analysis with online filtering (Signal)

Slight suppression if PID is required

Time detector difference

time difference between the first digis MVD-STT

Time detector difference

All detectors have to be calibrated before EB

ftf_sim.root – 2000 events at 6.2315 GeV beam

neighbouring timestamps difference of MVD Pixels

dE-dT for EMC

dE-dT for STT

pdg of particle with dt >20 ns

pdg of particle with dt >20 ns

TimeGapEventBuilderTask updated v 1.1

-I- PndGapEventBuilderTask:Exec 3

Branch MVDSortedPixelDigis has first digi time = 3095.07 length 51 and last digi time = 3120
Branch MVDSortedStripDigis has first digi time = 3094.53 length 22 and last digi time = 3115.03

Branch SciTSortedHit has first digi time = 1305.56 length 1 and last digi time = 1305.56

Branch FTSSortedHit has first digi time = 3391.84 length 31 and last digi time = 3524.54

Min timestamp of the first digi: = 1305.56

Branches: SciTSortedHit is part of event with first digi = 1305.56 and last digi = 1305.56

Max timestamp of the last digi: = 1305.56

MVDSortedPixelDigis 3095.07 51 output array before 0 time 3095.07 output array after 0 OK

MVDSortedStripDigis 3094.53 22 output array before 0 time 3094.53 output array after 0 OK

TimeGapEventBuilderTask updated v 1.1

-I- PndGapEventBuilderTask:Exec 4

output array after 22

Branch MVDSortedPixelDigis has first digi time = 3095.07 length 51 and last digi time = 3120 Branch MVDSortedStripDigis has first digi time = 3094.53 length 22 and last digi time = 3115.03 Branch STTSortedHits has first digi time = 3107.21 length 123 and last digi time = 3340.78 Branch GEMSortedDigi has first digi time = 3103.33 length 8 and last digi time = 3103.33 Branch SciTSortedHit has first digi time = 3106.54 length 3 and last digi time = 3106.89 Branch EmcDigiSorted has first digi time = 3092.8 length 10 and last digi time = 3118.89 Branch MdtSortedHit has first digi time = 3112.57 length 23 and last digi time = 3116.15 Branch FTSSortedHit has first digi time = 3391.84 length 31 and last digi time = 3524.54 Min timestamp of the first digi: = 3092.8

Branches: MVDSortedPixelDigis is part of event with first digi = 3095.07 and last digi = 3120 Branches: MVDSortedStripDigis is part of event with first digi = 3094.53 and last digi = 3115.03 Branches: STTSortedHits is part of event with first digi = 3107.21 and last digi = 3340.78 Branches: GEMSortedDigi is part of event with first digi = 3103.33 and last digi = 3103.33 Branches: SciTSortedHit is part of event with first digi = 3106.54 and last digi = 3106.89 Branches: EmcDigiSorted is part of event with first digi = 3092.8 and last digi = 3118.89 Branches: MdtSortedHit is part of event with first digi = 3112.57 and last digi = 3116.15 MVDSortedPixelDigis 3380 11 output array before 51 time 3380 output array after 51 MVDSortedStripDigis 3382.88 11 output array before 22 time 3382.88

Time-Gap Algorithm updated v 1.0

TimeGap Algorithm updated v 1.1

TimeGapEventBuilderTask updated v 1.1

GetData(Detector, TimeGap, 40 ns)

TimeGapEventBuilderTask updated v 1.0

Time duration of event Background (STT)

Time duration of event After time-gap EB (dt=20 ns)

