## **Quarkonia Studies at CMS**

W. Adam

Institute of High Energy Physics
Austrian Academy of Sciences



EXA2011, Vienna, Sep. 8, 2011





### **Outline**



Why quarkonia @ CMS?

Quarkonia reconstruction in CMS

Measurements in pp collisions at √s=7TeV

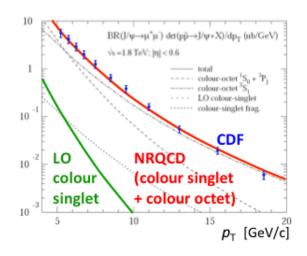
Cross sections for  $\psi$  and  $\Upsilon$  states  $X_c$  and X(3872)

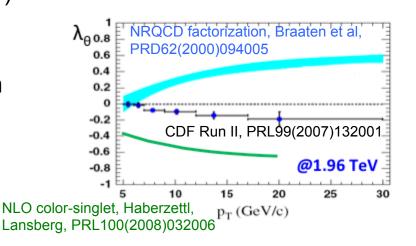
Quarkonia in Pb-Pb collisions

**Summary and outlook** 



# Why quarkonia @ CMS?





#### Many good reasons!

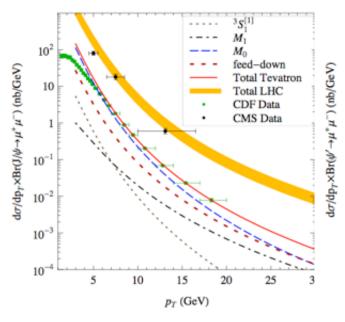
- They provide a unique laboratory for studying QCD
- They are abundantly produced at LHC
- They can be used to probe hot, dense matter

#### Some history ...

- In the 90's CDF observed direct production rates for the J/ψ and ψ(2S) far beyond the prediction for LO color-singlet production
- Several theoretical approaches were developed
  - The inclusion of color-octet terms (NRQCD) could describe the increase using freely adjustable LDME terms
  - NLO color singlet models could also match the cross sections
  - None of the two approaches describes the polarization data



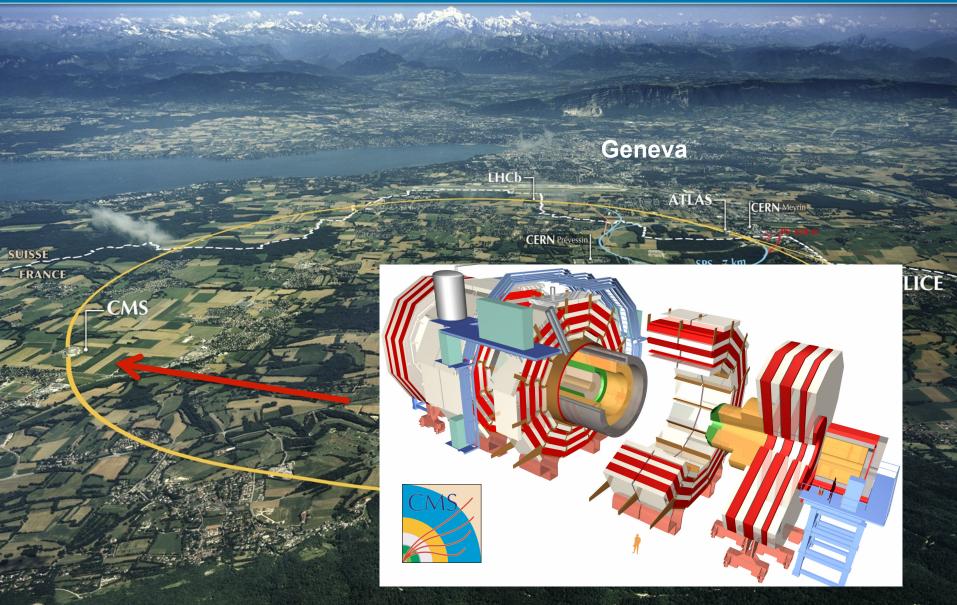





## Why quarkonia @ CMS?



#### Recent progress on theory ...


- New NRQCD calculations at NLO became available for charmonium (including color-singlet and color-octet contributions) at O(α<sub>s</sub><sup>4</sup>v<sup>4</sup>).
- They agree well with cross sections measured at the Tevatron and first LHC results.
- There is a hint that one CO state (<sup>1</sup>S<sub>0</sub><sup>[8]</sup>) dominates J/ψ direct production
- Further comparisons with increasing precision on LHC cross section data and with polarization measurements are needed!



Ma et al, PRL106(2011)042002







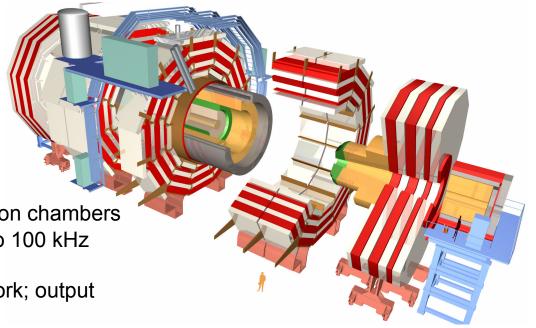




#### Silicon pixel & strip tracker

- 1440 pixel and 15k strip modules
- Track reconstruction in |η|<2.5 extends to p<sub>T</sub> below 100 MeV
- Typical resolutions (central region) at p<sub>T</sub>=10 GeV
   σ(p<sub>T</sub>)/p<sub>T</sub> < 1%, σ(dxy) ~ 20 μm</li>

#### Magnet

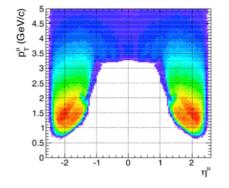

Superconducting solenoid
 B = 3.8T

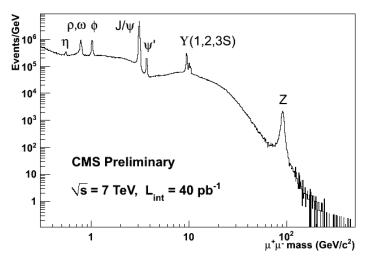
#### **Two-Tier trigger system**

- Input: up to 40 MHz bunch crossing rate
- L1 (hardware)
   (multi-)object conditions using muon chambers
   and calorimeters; output rate up to 100 kHz
- HLT (software)
   PC farm using offline SW framework; output rate up to a few 100 Hz

#### **Muon chambers**

- 3 different technologies
- Combined reconstruction with tracker
   Acceptance up to |η|=2.4
   p<sub>T</sub> cutoff due to material & B-field
   typically 1 3 GeV
   Low-energy p<sub>T</sub> resolution dominated
   by inner track measurement



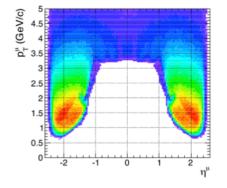






#### From collisions to tape ...

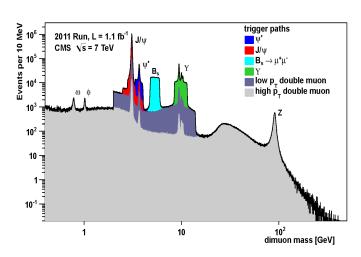
- Quarkonia measurements are based on single and double muon triggers
  - Access to quarkonium  $p_T \to 0$  and / or highly asymmetric decays requires low momentum thresholds for the muons
- "Golden" data taking period in 2010:
  - Double muon triggers without explicit p<sub>⊤</sub> thresholds
  - Muon+track triggers for decays with a soft 2<sup>nd</sup> muon









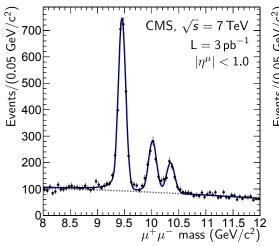


#### From collisions to tape ...

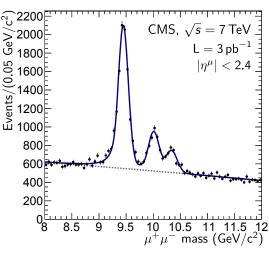
- Quarkonia measurements are based on single and double muon triggers
  - Access to quarkonium  $p_T \to 0$  and / or highly asymmetric decays requires low momentum thresholds for the muons
- "Golden" data taking period in 2010:
  - Double muon triggers without explicit p<sub>⊤</sub> thresholds
  - Muon+track triggers for decays with a soft 2<sup>nd</sup> muon



#### 2011 data taking

- have to compete with high priority analyses (searches, top physics, ..)
  - Specific trigger windows around each resonance (incl. sidebands)
  - Low rate control triggers for monitoring and measurement of the efficiency



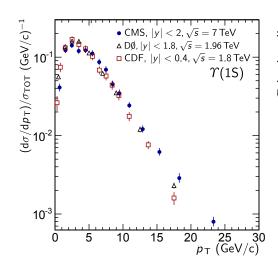



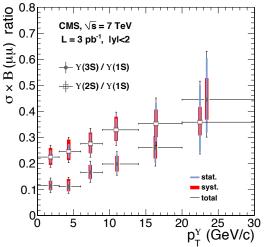

## **Upsilon**



- Purely HW di-muon trigger
- Efficiencies measured from data on a 2D grid in  $p_T \times |\eta_u|$
- Di-muon system:
  - Opposite charge, 8<M<sub>μμ</sub>/GeV<14, |y|<2, good di-muon vertex</li>
- · Good separation of the states!







CMS Coll., PRD83(2011)112004

#### **Results**

 For p<sub>T</sub><30 and |y|<2 and assuming unpolarized Y

$$\sigma(pp \to Y(1S)X) \cdot \mathcal{B}(Y(1S) \to \mu^{+}\mu^{-})$$
= 7.37 ± 0.13(stat.)(syst.) ± 0.81(lumi.) nb,
$$\sigma(pp \to Y(2S)X) \cdot \mathcal{B}(Y(2S) \to \mu^{+}\mu^{-})$$
= 1.90 ± 0.08(stat.)(syst.) ± 0.21(lumi.) nb,
$$\sigma(pp \to Y(3S)X) \cdot \mathcal{B}(Y(3S) \to \mu^{+}\mu^{-})$$
= 1.02 ± 0.07(stat.)(syst.) ± 0.11(lumi.) nb.

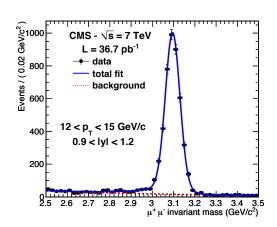


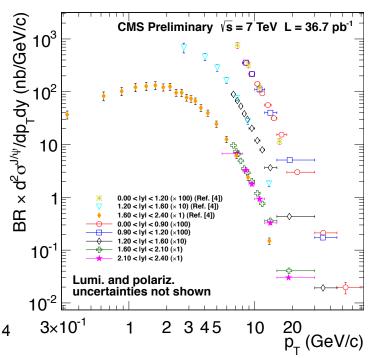


$$Y(2S)/Y(1S) = 0.26\pm0.02\pm0.04$$
  
 $Y(3S)/Y(1S) = 0.14\pm0.01\pm0.02$ 



## J/ψ





#### Charmonia

- More experimental challenges: contributions from feed down from heavier charmonia AND from b-hadron decays (for 1S)
- Combination of several triggers
- Selection of opposite-charge pairs with 2.5<M<sub>uu</sub>/GeV<4.7 and a good common vertex</li>
- Efficiency calculated as ε(µ<sub>1</sub>)×ε(µ<sub>2</sub>)×ε<sub>vertex</sub>×ρ
  - (single muon, vertex fit and correlation)
- Yield extraction from a fit to the mass spectrum

#### Results (inclusive)

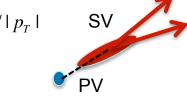
- Cross section measurement up to p<sub>T</sub>=70GeV
- Good agreement with first low-p<sub>T</sub> analyses (different triggers and analysis methods)
- Errors in the range 2-9% (stat) and mostly
   <1% (syst) but dependence on polarization</li>
   scenario (here: unpolarized)

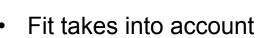






### J/ψ

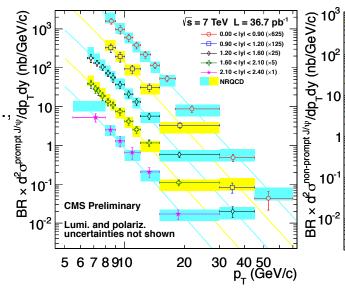


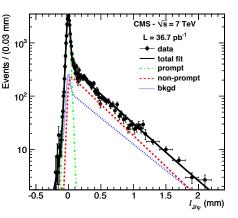


 $\sqrt{s} = 7 \text{ TeV L} = 36.7 \text{ pb}^{-1}$ 

#### Separation of prompt and non-prompt components

Using proper decay time associated with di-muon vertex

$$\ell_{J/\psi} = \frac{\mathbf{u}^T \mathbf{s}^{-1} \mathbf{x}}{\mathbf{u}^T \mathbf{s}^{-1} \mathbf{u}} m_{J/\psi} / |p_T| \qquad \mathbf{x} = (\mathbf{SV} - \mathbf{PV})_{xy} \quad u = \mathbf{p_T} / |p_T| \qquad \text{SV}$$




- Event-by-event estimates of the resolution
- δ-function (prompt) and effective exponential (non-prompt)
- Background shape from mass-sidebands

#### Results

- Excellent agreement with theoretical predictions:
  - NRQCD (prompt): Chao et al., PRL106:042002, 2011
  - FONLL (non-prompt):
     Cacciari et al.,
     JHEP 0103 (2001) 006





CMS Preliminary

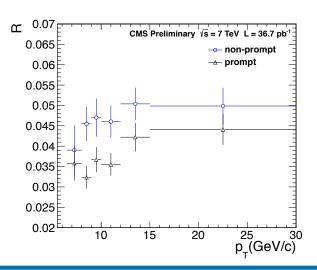
Lumi. and polariz.

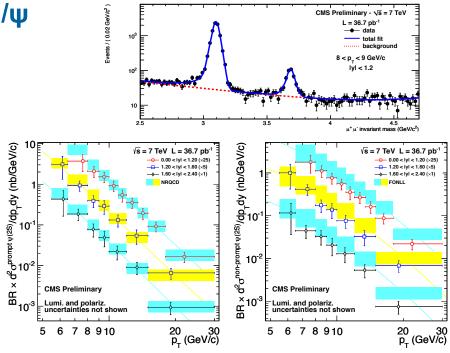
5 6 7 8 9 1 0

uncertainties not shown

20

30 40 50 p<sub>T</sub> (GeV/c)





# ψ (2S)



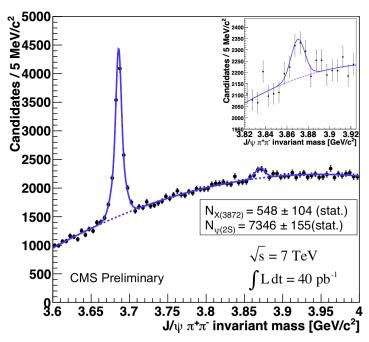
#### Same experimental approach as for J/ψ

- But some adjustments to lower statistics: mass difference M<sub>2S</sub>-M<sub>1S</sub> fixed to PDG values and Crystal Ball function parameters (resolution, tail) common with 1S
- Typical resolutions (both states):
  - ~20MeV (barrel) / ~50MeV (endcaps)
- Again, good agreement with predictions but measured ψ(2S) non-prompt spectrum falls steeper with increasing p<sub>T</sub>





- Lower systematics on cross section ratio:
  - ~ 10% without polarization effects
  - Polarization: 12 20%
  - Stat. error ~ 3 − 5%




# X(3872)



#### First "exotic" state measured at CMS

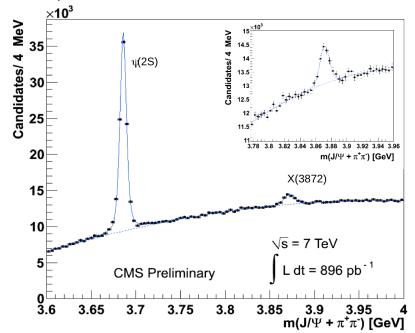
- Observed in the X(3872)  $\rightarrow$  J/ $\psi$   $\pi^+\pi^-$  channel and measured relative to  $\psi$ (2S)
- Reconstruction using a 4-track vertex fit, imposing the J/ψ mass on the opposite-charge muon pair
- Cross section ratio for p<sub>T</sub> > 8 GeV and |y| < 2.2 CMS-PAS-BPH-10-018  $\frac{\sigma(pp \to X(3872) + anything) \times BR(X(3872) \to J/\psi \ \pi^+\pi^-)}{\sigma(pp \to \psi(2S) + anything) \times BR(\psi(2S) \to J/\psi \ \pi^+\pi^-)} = 0.087 \pm 0.017(stat) \pm 0.009(syst)$ 
  - Most systematic effects cancel





# X(3872)




#### First "exotic" state measured at CMS

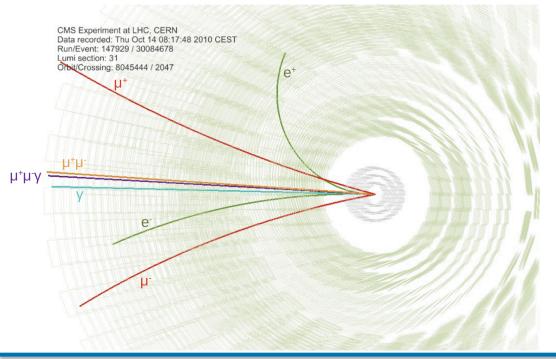
- Observed in the X(3872)  $\rightarrow$  J/ $\psi$   $\pi^+\pi^-$  channel and measured relative to  $\psi$ (2S)
- Reconstruction using a 4-track vertex fit, imposing the J/ψ mass on the opposite-charge muon pair
- Cross section ratio for p<sub>T</sub> > 8 GeV and |y| < 2.2 CMS-PAS-BPH-10-018  $\frac{\sigma(pp \to X(3872) + anything) \times BR(X(3872) \to J/\psi \ \pi^+\pi^-)}{\sigma(pp \to \psi(2S) + anything) \times BR(\psi(2S) \to J/\psi \ \pi^+\pi^-)} = 0.087 \pm 0.017(stat) \pm 0.009(syst)$ 
  - Most systematic effects cancel

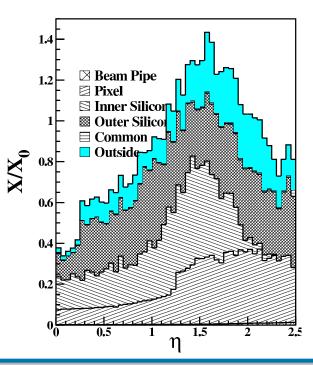
#### Update with 0.9 fb<sup>-1</sup>

- Estimated yield
  - $N(X(3872)) = 5304 \pm 341$

CMS-DP-2011-009







# Radiative $\chi_c$ decays



#### Observation of $\chi_{c1}$ and $\chi_{c2}$ in their decays to J/ $\psi$ $\gamma$

- Small mass differences:  $\Delta M(\chi_{c2},\chi_{c1})$ =45.6MeV and  $\Delta M(\chi_{c1},\chi_{c0})$ =95.9 MeV
- Challenging measurement for a high-p<sub>⊤</sub> detector like CMS!
- In order to achieve best photon energy solution:
  - Use conversions in the CMS tracker!

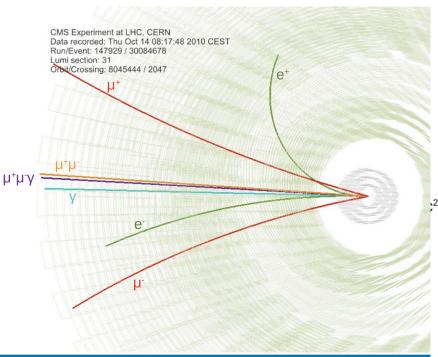


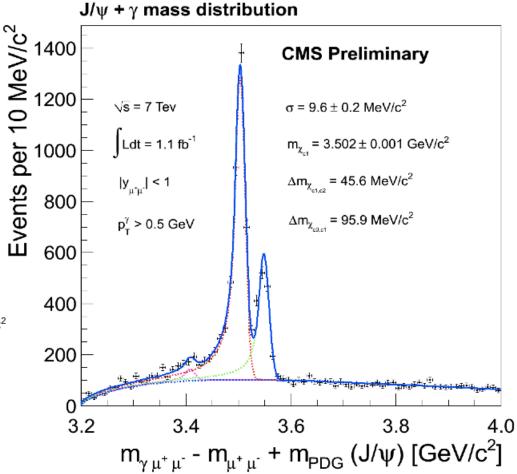




## Radiative $\chi_c$ decays




#### Observation of $\chi_{c1}$ and $\chi_{c2}$ in their decays to J/ $\psi$ $\gamma$


- In order to achieve best photon energy solution:
  - Use conversions in the CMS tracker!

CMS-DP-2011-006

- Can achieve ~10MeV resolution

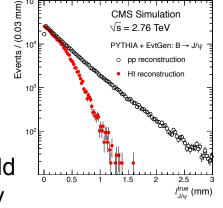
 $\rightarrow \chi_c$  states are well resolved!

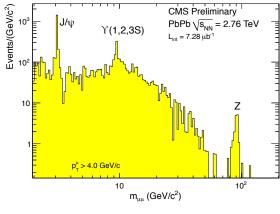






# Quarkonia in Heavy Ion Collisions





### Reconstruction of dimuon states in Pb-Pb collisions at √s<sub>NN</sub>=2.76TeV

Using similar algorithms as for pp, but optimized for the high track density

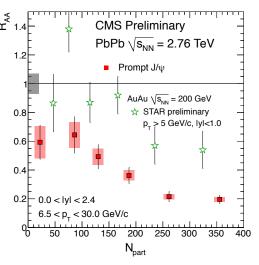
in heavy ion collisions

 Main difference: reconstructions is more focused on prompt muons





#### Suppression of quarkonia


 In deconfined matter quarkonia should dissolve into open charm and beauty

- Using pp-collisions at √s=2.76TeV as reference
  - Nuclear modification factor

$$R_{AA} = \frac{L_{pp}\sigma_{pp}}{N_{coll}N_{MB}} \frac{N_{HI}^{QQ} / \varepsilon_{HI}}{N_{pp}^{QQ} / \varepsilon_{pp}}$$

- For prompt  $J/\psi$ :  $R_{AA} = 0.20 \pm 0.03 \pm 0.01$  (central)
  - At LHC B-decays to J/ψ becomes important
  - First measurement corrected for non-prompt component!

CMS-PAS-HIN-10-006

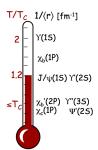


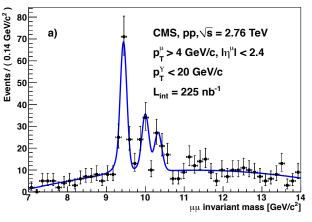
centrality →



## Quarkonia in Heavy Ion Collisions




#### **Suppression of Y**


- Expect successive "melting" according to the different binding energies:
  - establishes a "temperature" scale of the medium
  - strongest binding for Y(1S)
- For the 0-20% most central PbPb collisions:

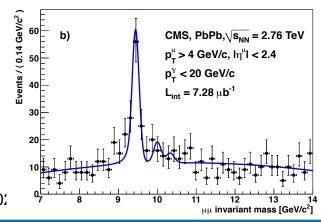
$$R_{AA}(\Upsilon(1S)) = 0.60 \pm 0.12 \pm 0.10$$

- Possibly due to high feed-down

CMS-PAS-HIN-10-006






#### Suppression of higher Y states

Using double ratio to reduce experimental uncertainties

$$\frac{\Upsilon(2S+3S)_{HI}/\Upsilon(1S)_{HI}}{\Upsilon(2S+3S)_{pp}/\Upsilon(1S)_{pp}} = 0.31 \begin{array}{c} +0.19 \\ -0.15 \end{array} \pm 0.03$$

- For a true ratio of 1 the probability to measure this or a lower value is < 1%</li>
- Future data samples will allow separate measurements for the 2S and 3S states

CMS Coll., PRL107(2011)052302





# **Summary & Outlook**



#### CMS shows an excellent performance in the reconstruction of lowmass dimuon states, both in pp and PbPb collisions

- Thanks to a flexible trigger system these events can be recorded even at high luminosity
- Quarkonia are reconstructed even at high track multiplicities

Differential production cross sections of  $\psi$  and  $\Upsilon$  states have been measured, including the non-prompt component of the J/ $\psi$ 

In general a good agreement with the theoretical predictions is observed

The production of  $\chi_c$  and X(3872) has been observed

The cross section ratio of X(3872)/ψ(2S) has been measured

Production of quarkonia is suppressed in PbPb collisions

In particular a strong indication for the suppression of excited
 Y states has been found

The next important step in the comparison to QCD predictions will be the measurement of the  $\Upsilon$  and  $J/\psi$  polarization