# Lorentz invariance on trial in the weak decay of polarized atoms



Stefan E. Müller

KVI, University of Groningen the Netherlands







### **Lorentz Symmetry**

Lorentz symmetry is the invariance of the laws of physics under

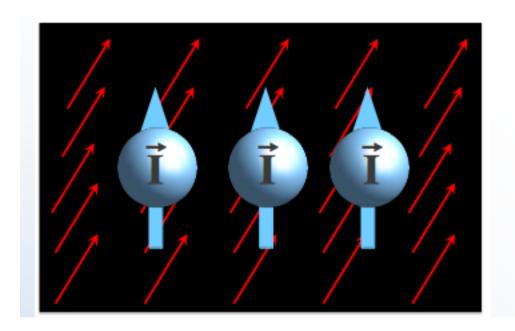
- rotations
- boosts

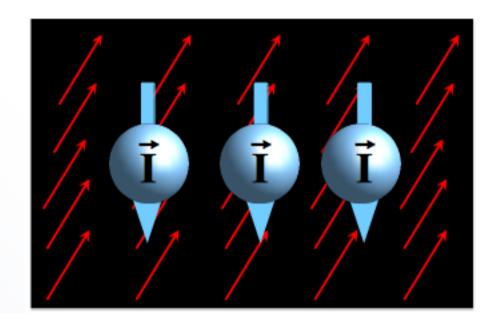
#### It underlies

- the theory of Special Relativity
- the Standard Model of Particle Physics

Also essential component of **General Relativity**, and closely connected to **CPT symmetry** 

Observation of Lorentz Symmetry Breaking would highly affect our current understanding of nature


### Status of Lorentz Symmetry Breaking

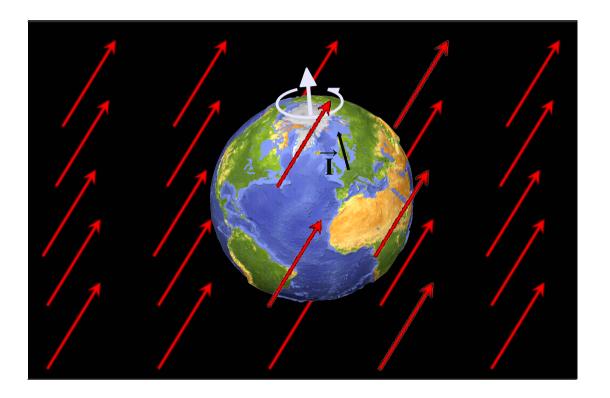

- LSB as low-energy signature of Quantum Gravity models
- Kostelecký et al.: Standard Model Extension (SME) hidden background fields connected to vacuum
- Many experimental searches, no evidence of LSB
- Tests mainly QED and gravity experiments, astrophysical observations
- Weak interaction tested in neutral meson and neutrino oscillations

Weak decay sector essentially unexplored

# **Lorentz Symmetry Breaking**

spin-polarized nuclei interact with hypothetical background fields



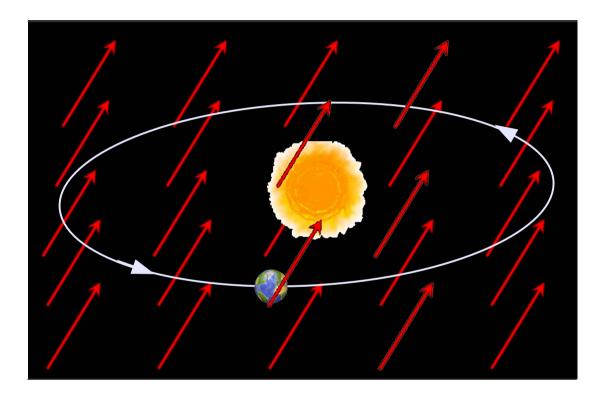



What is the change in the decay rate if the orientation of the nuclear spin changes with respect to background fields?

- search for variations induced by daily, yearly or "deliberate" reorientation of the nuclear spin

# **Lorentz Symmetry Breaking**

spin-polarized nuclei interact with hypothetical background fields




What is the change in the decay rate if the orientation of the nuclear spin changes with respect to background fields?

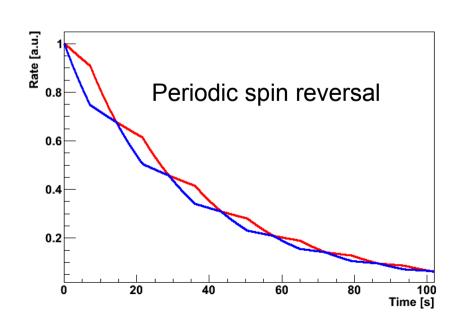
- search for variations induced by daily, yearly or "deliberate" reorientation of the nuclear spin

# **Lorentz Symmetry Breaking**

spin-polarized nuclei interact with hypothetical background fields



What is the change in the decay rate if the orientation of the nuclear spin changes with respect to background fields?

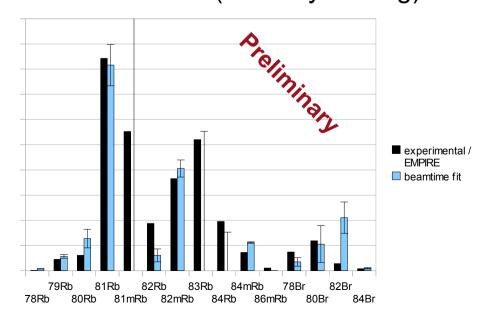

- search for variations induced by daily, yearly or "deliberate" reorientation of the nuclear spin

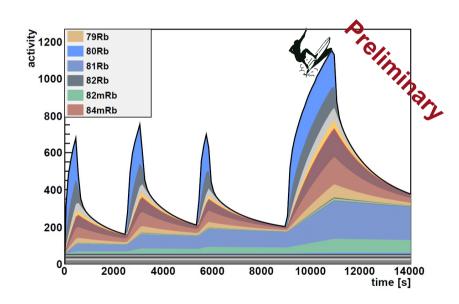
### General approach:

- Produce short-lived isotopes with AGOR facility at KVI
- ► Transport atoms to provide cleaner experimental conditions
- Polarize nuclei via optical pumping of atoms into "stretched" state
- Measure change in decay rate while flipping polarization of nuclei

#### Detect

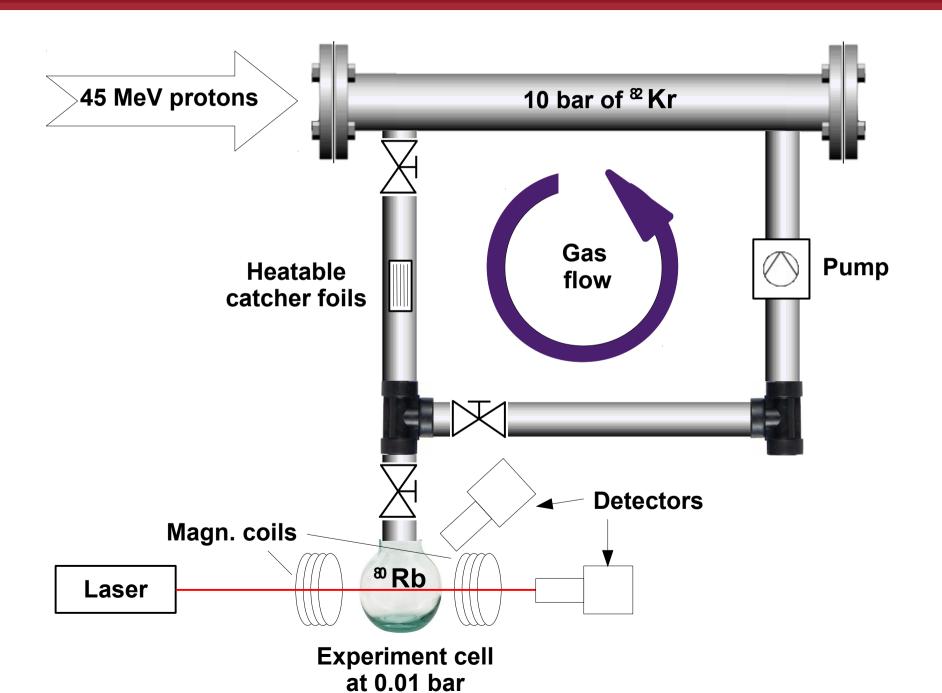
- $\beta$  or annihilation  $\gamma$ 's ( $\beta$ <sup>+</sup>)
- γ's from decay of daughter nuclei
- fluorescence





### **Production:**

### Production of <sup>8</sup>Rb:

- ► **Produce** in situ via <sup>®</sup> Kr(p,3n)<sup>®</sup> Rb reaction using 10 bar **Krypton target** 
  - 10<sup>9</sup> decays/s feasible
- Properties:  $1^+ \rightarrow 0^+ (GT)$ ,  $\beta^+$ ,  $\tau_{1/2} = 34s$

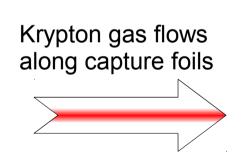

### Production rates (arbitrary scaling)

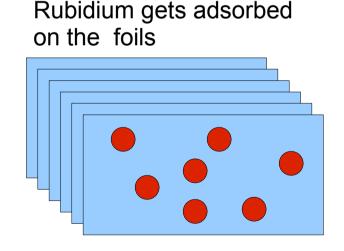




Total activity breakdown

### **Production and Transport:**



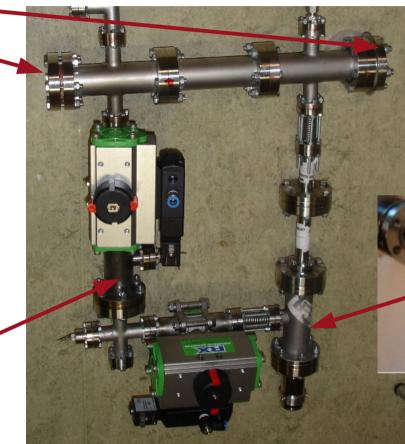


### **Transport:**

### Experimental challenge :

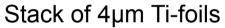
Optimal polarization needs buffer gas pressure reduced to 10 mbar - extract Rubidium from Krypton and store it

# Accumulate the Rubidium via adsorption on a cold surface, then release it by heating the surface





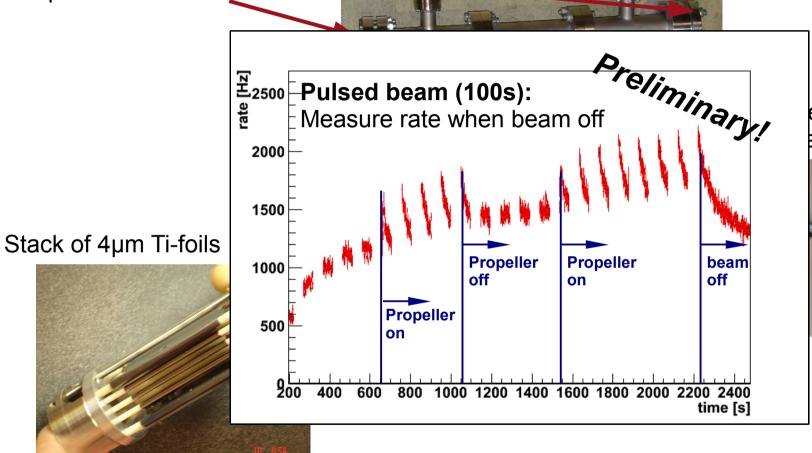

Krypton is pumped out, Rubidium is released to experiment


Titanium foils: high capture rate for Rubidium at room temperature, release at about 650 K.

# **Experimental setup:**

Beam windows of 100µm HAVAR foil



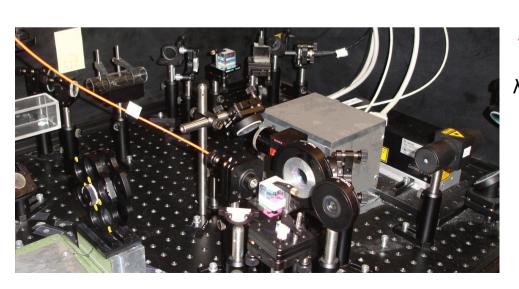

Propeller on rotatable feedthrough

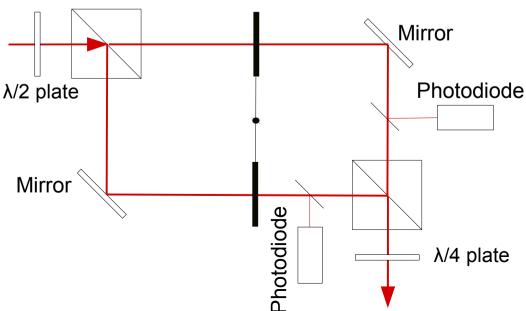




### **Production and Transport:**

Beam windows of 100µm HAVAR foil





eller on able feedthrough



Use weak magnetic field & circularly polarized σ<sup>±</sup> light to pump atoms into "stretched" state

- Stabilized laser beams
  - i.e. lock laser to hyperfine structure transitions from vapor cell
- "Polarization switch" to change between σ<sup>±</sup> polarized light
  - split beam in  $\sigma^+$  and  $\sigma^-$  part and use chopper wheel to block beam
- Coils for magnetic field (few Gauss sufficient)





### **Detection:**

- Two pairs of Nal detectors to measure 511 keV coincidences
  - use parity violating asymmetry to extract nuclear polarization
- Ge-detector for daughter nuclei decay photons or 511 keV γ's
  - measurement of decay lifetime



### Conclusions

- Lorentz symmetry is a keystone of modern physics
- No compelling evidence for its violation has been found to date
- Unique test of Lorentz Symmetry breaking using weak decay of spin-polarized atoms
- Theoretical development for interpreting the observables within SME framework underway
- Production and transport of rubidium tested
- Lasers set up and stabilized, setting up of detectors under way
- Next step: Test of detector setup using  $^{20}$  Na from TRI $\mu$ P separator

# People:



# Extra slides

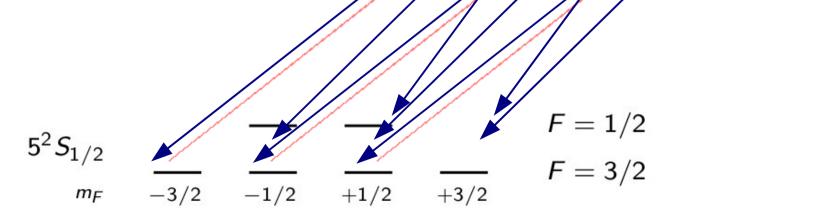
### **Decay rate:**

### Decay rate including LSB terms:

$$\frac{d\Gamma}{dE\,d\Omega} \sim \left(1 + A_0 \frac{\langle \vec{I} \rangle}{I} \cdot \frac{\vec{p}}{E}\right) + \xi_1 \left(1 + \xi_A \left(\hat{p} \cdot \frac{\langle \vec{I} \rangle}{I}\right)\right) \hat{p}\,\hat{n} + \xi_2 \frac{\langle \vec{I} \rangle}{I} \hat{n} + \xi_3 \hat{p}_i \left(\frac{\langle \vec{I} \rangle}{I}\right)_j \rho^{ij}$$

I = nuclear spin; p, E = electron momentum and energy  $\xi_{I,2,3,A}$  = coupling strength to LIV fields  $\hat{n}$ ,  $\rho^{ij}$ 

Use weak magnetic field & circularly polarized σ<sup>±</sup> light with 795nm (D1 transition) to pump the Rb atoms into the "stretched" state


$$5S_{\frac{1}{2}}(F=3/2;m_F=\pm 3/2)$$
  $-3/2$   $-1/2$   $+1/2$   $+3/2$   $m_F$   $F=1/2$   $-3/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/2$   $-1/$ 

Pump beam  $\sigma^+$ :  $\Delta m_F = +1$ 

$$F = 1/2$$
 $F = 1/2$ 
 $F = 3/2$ 
 $F = 3/2$ 

Use weak magnetic field & circularly polarized σ<sup>±</sup> light with 795nm (D1 transition) to pump the Rb atoms into the "stretched" state

$$5S_{\frac{1}{2}}(F=3/2;m_{F}=\pm 3/2) \\ 5^{2}P_{1/2} \\ \hline \\ Pump beam \ \sigma^{+}: \ \Delta m_{F}=+1 \\ \hline \\ Decay: \ \Delta m_{E}=0,\pm 1 \\ \hline \\ \\ -3/2 \\ \hline \\ -1/2 \\ \hline \\ +1/2 \\ \hline \\ +1/2 \\ \hline \\ +3/2 \\ \hline \\ F=1/2 \\ F=3/2 \\ \hline \\ F=3/2$$



Use weak magnetic field & circularly polarized σ<sup>±</sup> light with 795nm

(D1 transition) to pump the Rb atoms into the "stretched" state

$$5S_{\frac{1}{2}}(F=3/2;m_F=\pm 3/2)$$

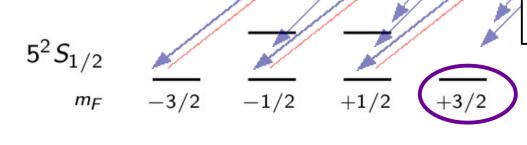
$$5^{2}P_{1/2}$$

$$-3/2$$

$$-1/2$$

$$-1/2$$

$$+1/2$$


$$+3/2$$

$$F=1/2$$

$$F=3/2$$

Pump beam  $\sigma^+$ :  $\Delta m_F = +1$ 

Decay:  $\Delta m_F = 0, \pm 1$ 



Atoms line up in "stretched" state with nuclear and electronic spin aligned to  $F=3/2, m_F=+3/2$ 

$$F = 3/2$$
 Nuclear spin follows helicity  
of laser light with respect to  
magnetic field axis