

7th Sep. 2011 Satoshi N Nakamura Tohoku University

International Conference on Exotic Atoms and Related Topics EXA2011

Strangeness Physics at JLab

JLab E05-115 collaboration, 2009, JLab Hall-C

Put "exotic"s !

Exotic particles (μ , π , K) + Atom (nucleus + electrons)

size or shape changes probe to detailed structure of the system study interaction under extreme conditions

Introduction of strangeness

hyperon (s quark) + nucleus (u, d quarks)

EM Production of hypernuclei

Characteristics of (e,e'K) HY study

Electromagnetic production

Convert **Proton to Lambda** :

 $\begin{array}{l} \mbox{Mirror to well studied HY by }(\pi, {\sf K}), \mbox{(K}, \pi) \\ \mbox{Absolute mass calibration with } \Lambda \mbox{ and } \Sigma^0 \\ \mbox{Both spin flip and non-spin flip amplitudes in forward angles} \end{array}$

High quality primary beam

- •High energy resolution (< 1MeV)
 - Thin enriched target

Challenge of (e,e'K) HY Study

Huge e' Background due to

Bremsstrahlung and **Møller** scattering

Signal/Noise, Detector High Quality Electron Beam is Essential !

Coincidence Measurement (e', K⁺)

Limited Statistics

DC beam is necessary

Necessary e⁻ beam for hypernuclear study

Continuou Electron be High curre Beam stab Momentul

Good emi

So far, only JLab CEBAF had been providing such a beam. Now upgraded MAMI-C can also!

The first (e,e'K⁺) hypernuclear experiment (E89-009, HNSS)

Demonstrated that :

the (e,e'K) hypernuclear spectroscopy is possible!

Sub-MeV energy resolution <800 keV (FWHM)

PRL 90 (2003) 232502, PRC 73 (2006) 044607

Improvement of SNN, EXA2011, Wien the 1st Generation experiment

Energy resolution as well as acceptance are limited by the kaon spectrometer (SOS)

 High Resolution Spectrometers (HRS x 2) in Hall A (Long orbit -> Higher momentum)
Septum + Large e'-K opening angle (Hall A)

•New short orbit spectrometer in Hall C High resolution Kaon Spectrometer (HKS)

Zero degree tagging method to maximize virtual photon flux

^{1st Gen.} Severe background from electrons associated with Bremsstrahlung (200 MHz for e' arm)

Splitter + Tilt Method (Hall C)

The 2nd Generation Experiments :

E94-107 (Spokespersons: Frullani, Garibaldi, LeRose, Markowitz, Saito) E01-011 (Spokespersons: Hashimoto, Tang, Reinhold, Nakamura)

Hall-A Hypernuclear Program E94-107

SNN, EXA2011, Wien Ee = 4GeV, Pe'= 1.8 GeV/c v = 2.2 GeV $P_{K}=2.0 \text{ GeV/c}$ $\theta_{e}, \theta_{K} \sim 6 \text{ deg}$ $Q^{2} = 0.079 (\text{GeV/c})^{2}$

Second Generation Exp. at JLab

2005 E01-011 (Hall C)

First step to midium heavy hypernuclei (²⁸Si, ¹²C, ⁷Li)

Hypernuclei in wide mass range

Hypernuclei in wide mass range

Third Generation Exp. at JLab 2009 E05-115 (Hall C)

Wide mass range hypernuclear spectroscopy $(5^{2}_{\Lambda}V, 1^{2}_{\Lambda}B, 1^{0}_{\Lambda}Be, 9_{\Lambda}Li, 7_{\Lambda}He)$

Major Improvements (10 times more VP tagging) **New HES+SPL** best match to HKS New pre-chicane beamline **New Calibrations** H₂O cell target Beam energy scan

Highlights of JLab hypernuclear study

 ${}^{12}{}_{\Lambda}$ B : Absolute binding energy, Reference

 ${}^{9}_{\Lambda}$ Li : p-shell hypernuclei

 ${}^{16}{}_{\Lambda}N : p_{N} {}^{-1} s_{\Lambda}$ state, Water fall target

 ^{28}AI : First beyond-p shell HY. by (e,e'K)

⁷_AHe : First reliable data, CSB effect

 ${}^{52}\Lambda V, {}^{10}\Lambda Be$ analyses are in progress

¹²C(π^+, K^+)¹² $_{\Lambda}C$ @ KEK-PS SNN, EXA2011, Wien ¹²C(e, e'K⁺)¹² $_{\Lambda}B$ @ JLab Hall A & C

Resolution ~ 2MeV

Excitation energy (gs energy from emulsion)

Resolution ~ 0.65MeV

Resolution ~ 0.5MeV

Absolute binding energy

	s_{Λ}		p_{Λ}		
Experiment	$Ex(-B_{\Lambda})$ [MeV]	Width [MeV]	$Ex(-B_{\Lambda})$ [MeV]	Width [MeV]	
	\pm (stat.) \pm (sys.)	\pm (stat.)	\pm (stat.) \pm (sys.)	\pm (stat.)	
E01-011	0	0.61 ± 0.05	$11.05 \pm 0.01 \pm 0.19$	0.87 ± 0.13	
	$(-11.40 \pm 0.01 \pm 0.14)$		$(-0.41 \pm 0.01 \pm 0.13)$		
E89-009	0	0.75		N/A	
[25, 26, 66]	(-11.52 ± 0.35)		(-0.49 ± 0.16)		
E94-107 [64]	0	1.15 ± 0.18	10.93 ± 0.03	0.67 ± 0.15	

$^{12}\Lambda$ C emulsion data

Nuclear Physics A484 (1988) 520-524

	TABLE 1 ^a)							
Decay mode	Range of the hypernucleus (µm)	$B_A (as {}^{12}_{A}C) (MeV)$	Ref.					
1. ${}^{12}_{\Lambda}C \rightarrow \pi^- + {}^{12}N(g.s.)$	_	11.14±0.57	4)					
2. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{4}He + {}^{7}Be$	$\textbf{3.0}\pm\textbf{0.8}$	10.45 ± 0.33	3)					
3. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{11}C$	4.3 ± 0.7	10.50 ± 0.47	3)					
4.	3.5 ± 0.4	10.65 ± 0.33	^{1,2})					
5.	3.5 ± 0.5	10.85 ± 0.44	^{1,2})					
6.	3.4 ± 0.5	11.59 ± 0.45	^{1,2})					
7.	3.2 ± 0.4	15.67 ± 0.50	1,2)	¹¹ C (3/2-) : Ex = 4.8MeV				
situation is not the case for π^- mesonic decay modes of ${}^{12}_{A}C$: $(\pi^{-12}N)$, $(\pi^-p^{11}C)$, $(\pi^-p^3He^4He^4He)$ and $(\pi^-p^4He^7Be)$. Every one of these decay topologies is easily confused with those of other hypernuclei.								
The value obtained for B_A of ${}^{12}_A$ C, (10.80 ± 0.18) MeV								
Statistical errors quoted, systematic errors (~0.04 MeV) reduced by me M_{Λ} in same emulsion stack.								
Nuclear Physics A547 (1992) 369		Re	ferenc	te for all (π , K) B _A data:				

 $^{12}_{\Lambda}C$ 10.76 ± 0.19

Statistical error only

Reference for all (π , K) B_{Λ} data: B_{Λ} (¹²_{Λ}Cg.s.) = 10.76 +-0.19MeV

$^{12}\Lambda$ B emulsion data

Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)

 B_{Λ} (¹² $_{\Lambda}$ Bg.s.) = 11.40 +- 0.01 +- 0.14 MeV (E01-011 Preliminary) **Totally independent measurement**

Ref) A=4 System

⁴ Λ ^H	$\pi^{-} + {}^{1}H + {}^{3}H$ $\pi^{-} + {}^{2}H + {}^{2}H$ total	56 11 67	2.14 ± 0.07 1.92 ± 0.12 2.08 ± 0.06	⇒	o.22 MeV difference
⁴ _A He	$\pi^{-} + {}^{1}H + {}^{3}He$ $\pi^{-} + {}^{1}H + {}^{1}H + {}^{2}H$ total	83 15 98	2.42 ± 0.05 2.44 ± 0.09 2.42 ± 0.04		

 $^{7}\Lambda He = {}^{6}He + \Lambda$

⁶He : 2n halo

$_{\Lambda}^{7}$ He Density Distributions

⁷Li(e,e'K⁺)⁷ $_{\Lambda}$ He

First reliable observation of 7^AHe w/ good statistics

M.Juric et al. NP B52 (1973) 1

A=4 system CSB Λ N interaction

SNN, EXA2011, Wien

CSB effect by cluster model

Present Status of Λ Hypernuclear Spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Decay π Spectroscopy of electro-magnetically produced HY (JLab E10-001 and MAMI-C KaoS project)

Expected Spectrum (simulation)

condition

beam current 50 uA, target 9Be 30mg/cm² ⁴ H peak 140 counts/20days, FWHM 110 keV/c

KaOS at MAMI-C (Mainz Univ.)

Pilot runs have Started at MAMI-C

Summary

The (e,e'K⁺) hypernuclear spectroscopy was *initiated at JLab*.

We have been developing many tools (HKS, HES, SC-Septum) and techniques (Tilt-method, RICH, Water-fall target) in the last decade and **it is** *now established*.

The (e,e'K) HY study at JLab/MAMI-C will play key role in the strangeness physics in collaborating with other facilities.