

What to expect from this presentation?

Features of PANDA

Overall physics ambitions

Focus: baryon studies from |S|=0-3

Focus: "Phase One"

Touch the "beyond" Phase One

Facility for Antiproton and Ion Research

Facility for Antiproton and Ion Research

High Energy Storage Ring - precision antiprotons

MSV-HESR mode (Phase-1+2)

- Momentum range: 1.5 -15 GeV/c
- Stochastic cooling: dp/p<5x10⁻⁵
- Accumulation: 10¹⁰ antiprotons in 1000 s
- Luminosity up to 2x10³¹ cm⁻²s⁻¹

+RESR (Phase-3)

10¹¹ antiprotons
 2x10³² cm⁻²s⁻¹

7

Systematic and precise tool to rigorously study the dynamics of QCD

PANDA physics overview

Dan)

Staging of PANDA

Today: Phase 0

Physics staging at PANDA

PANDA "full" setup

PANDA "startup" setup

Not shown: modular hypernuclei detector

Analytical nature of form factors

0

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2\beta s} \left[(1+\cos^2\theta)|G_M|^2 + \frac{1}{\tau}\sin^2\theta|G_E|^2 \right]$$

EPJA 52 325 (2016)

15

Analytical nature of form factors

EPJA 52 325 (2016)

Analytical nature of form factors

Time-like Electromagnetic Form Factors (lepton pair production)

EPJA 57, 30 (2021); arXiv:2006.16363

Form factors from space to time-like region

Jai

Space-like and time-like are related by dispersion theory!

Form factors from space to time-like region

Dar

Space-like and time-like are related by dispersion theory!

Form factors from space to time-like region

Space-like and time-like are related by dispersion theory!

Exploring the hyperon sector

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

Courtesy: Karin Schoenning

Hyperon dynamics

Strong production dynamics

- Relevant degrees of freedom?
- Strange *versus* charm sector?
- Role of spin?

PANDA is a hyperon factory!

Courtesy: Karin Schoenning

** 90% C.L.

PANDA is a hyperon factory!

Courtesy: Karin Schoenning

** 90% C.L.

PANDA is a hyperon factory!

EPJA in print, arXiv:2009.11582

Extend to |S|=3 and charm hyperons

Antihyperons in nuclei @ Phase-1

Josef Pochodzalla

Antihyperons in nuclei @ Phase-1

Josef Pochodzalla

Phase-1: antihyperon optical potential

Exploit abundantly produced hyperonantihyperon pairs near threshold

Spectrum: ~12 hours of beam time at interaction rates 10⁶ s⁻¹

Striking sensitivity to potential

First step towards hyperatom and hypernuclei program

Hyperon spectroscopy

- PDG: "[...] nothing of significance on Ξ resonances has been added since our 1988 edition"*
- Phase-1: 20 events/s produced
- Good background suppression through tracking

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Hyperon spectroscopy

Map out the |S|=2 excited baryon spectrum

Hyperon structure with PANDA@HADES

HYPERNUCLEI

1.0

8

ñ

Б

THO!

P

\$140

444

240

1-10

Total D

1.40

"Tour de Force"

Hyperatom/nucleus setup

Marcell Steinen, PhD dissertation

Hyperatom/nucleus setup

Marcell Steinen, PhD dissertation

Marcell Steinen, PhD dissertation

Hyperatoms - the basic concepts

- Hyperon puzzle in neutron stars
- $m_{red,\Xi} \approx 2570 m_{red,e}$
- High initial (n,l) states
- X-ray energy to keV-MeV
 → Germanium detectors
- Radius of states: $r \propto \frac{n^2}{m_{red}}$
 - → Nuclear interaction in neutron rich periphery
 - \rightarrow Measurement of V_E

Hyperatoms - the observables

Marcell Steinen, PhD dissertation

Hyperatoms - the expected signal

 2.10^{6}

- Signal efficiency:
- **Background suppression :**

Marcell Steinen, PhD dissertation

Expected number of observed transitions

We have follow-up ambitions!

Strangeness Studies with PANDA at Phase One

