Low-lying structure of p-sd shell hypernuclei and YN interaction with Antisymmetrized Molecular Dynamics

Today: not only A hypernuclei but also Ξ **hypernuclei**

Masahiro Isaka

Hosei University

Recent developments in hypernuclear physics

◆**Experiments**

\bullet A hypernuclei

- Mass dependence of B_{Λ}
- Level structure
- Future exp at J-PARC, JLab, etc.

●E hypernuclei

Nakazawa, et al., PTEP (2015) Hayakawa, et al.,PRL (2021)

- \bullet B $_{\Xi}$ from emulsion data
- High resolution ${}^{12}{\rm C}({\rm K}$, ${\rm K}^+){}^{12}{\rm _{\Xi}}{\rm Be}$ experiment planned at J-PARC etc.

O. Hashimoto and H. Tamura, PPNP **57** (2006), 564.

Situation: A hypernuclei

Binding energy of Λ **particle, B**_{Λ}

Level structure of L **hypernuclei from y-ray spectroscopy data**

O. Hashimoto and H. Tamura, PPNP **57** (2006), 564.

Situation: A hypernuclei

◆**Future experiments at J-PARC, JLab, etc.**

- ⚫**Heavier(sd-shell) & n-rich hypernuclei can be produced**
- ⚫**Various structures will appear**

Structure of hypernuclei can affect the observables of hypernuclei

Situation: E hypernuclei

\triangle **B**_F obtained in E^- + ¹⁴**N** states

p-state has been identified

○ KISO & IBUKI events interpreted as Ξ^- in p-state

K. Nakazawa, et al., PTEP**2015**, 033D02(2015) S.H. Hayakawa, et al., PRL**126**, 062501(2021)

Deeply bound states have been found ⇒ s-state candidate

o IRRAWADDY & KINKA events

Yoshimoto, et al., arXiv:2103.08793v1

Theoretical studies on YN interaction

\triangle AN

Interaction models have been developed by comparing with expt.

- **Few-body calculations**
- **Shell model studies**

O. Hashimoto and H. Tamura, PPNP **57** (2006), 564 E. Hiyama, and T. Yamada, PPNP**63**, 339(2009)

… etc. D.J. Millener, NPA691 (2001) 93c, Nuclear Phys. A754 (2005) 48c

L**N interaction used in this study**

We use G-matrix interaction derived from Nijmegen potential (YNG)

- Nijmegen potential: a meson exchange model
- G-matrix calculation takes into account medium effects
- YNG interaction depends on Fermi momentum k_F through nuclear density mainly coming from Λ N- Σ N coupling effects

 $\langle \rho \rangle = \int dr^3 \rho_N({\bf r}) \rho_\Lambda({\bf r}) ~~~ k_F = \left(\frac{3 \pi^2 \langle \rho \rangle}{2} \right)^{1/3}$ **k**_F can be calculated from density e.g. Averaged Density Approximation (ADA)

Theoretical studies on YN interaction

$\Lambda\Lambda$ and NE interactions from lattice QCD near the physical point

Kenji Sasaki a, b, *, Sinya Aoki a, b, c, Takumi Doi ^{b, d}, Shinya Gongyo ^b, Tetsuo Hatsuda^{d, b}, Yoichi Ikeda^{e, b}, Takashi Inoue^{f, b}, Takumi Iritani^b, Noriyoshi Ishii^{e,b}, Keiko Murano^{e,b}, Takaya Miyamoto^b (HAL QCD Collaboration)

We also use G-matrix interaction derived from HAL QCD EN potential to examine it in $E^- + {}^{14}N$

●A hypernuclei

M. Isaka, Y. Yamamoto, Th.A. Rijken , PRC**94**, 044310(2016) **"Mass-dep. of B**^L **and importance of describing core deformation"**

M. Isaka, Y. Yamamoto, T. Motoba, Phys. Rev. C**101**, 024301(2020) **"Effects of** L**N spin-dependent force on low-lying excitation spectra"**

●E hypernuclei

"Application of HAL-QCD potential to $E^- + {}^{14}N$ and prediction for ${}^{12}E$ Be"

T. Tada, M. Isaka, M. Kimura, Y. Yamamoto

We apply an extended version of antisymmetrized molecular dynamics for hypernuclei (HyperAMD) to Λ and Ξ hypernuclei.

Theoretical Framework: HyperAMD M.I., et al., PRC**83**(2011) 044323

M. I., et al., PRC**83**(2011) 054304

HyperAMD: Antisymmetrized Molecular Dynamics for hypernuclei

◆**Hamiltonian**

$$
\widehat{H} = \widehat{T}_N + \widehat{V}_{NN} + \widehat{T}_Y + \widehat{V}_{YN} - \widehat{T}_g
$$

◆**Wave function**

⚫ **Nucleon part:Slater determinant** Spatial part of s.-p. w.f. is described as Gaussian packets

⚫ **Single-particle w.f. of hyperon:**

Superposition of Gaussian packets

• Total w.f.:
$$
\psi(\vec{r}) = \sum_m c_m \phi_m(r_Y) \otimes \frac{1}{\sqrt{A!}} \det[\phi_i(\vec{r}_j)]
$$

NN:Gogny D1S (and Volkov No.2 in several L hypernuclei) **YN:G matrix interaction (YNG) derived from**

- Nijmegen ESC14 (AN) for A hypernuclei
- **HAL (**X**N) for** X **hypernuclei**

$$
\varphi_{N}(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]
$$

$$
\varphi_{i}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \nu_{\sigma}(r - Z_{i})_{\sigma}^{2}\right] \chi_{i}\eta_{i}
$$

$$
\chi_{i} = \alpha_{i}\chi_{\uparrow} + \beta_{i}\chi_{\downarrow}
$$

$$
\phi_Y(r) = \sum_m c_m \phi_m(r)
$$

$$
\phi_m(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_\sigma (r - z_m)_\sigma^2\right] \chi_m
$$

$$
\chi_m = a_m \chi_\uparrow + b_m \chi_\downarrow
$$

◆**Procedure of the calculation**

- * *i i X H dt dX* ∂ ∂ = \pm \hbar $\bm{\mathcal{K}}$ κ < 0 **Variation** • Imaginary time development method:
	- Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

◆**Procedure of the calculation**

e.g.) ⁸Be

⚫**Energy variation with constraint on nuclear quadrupole deformation**

Described by (β, γ)

◆**Procedure of the calculation**

e.g.) ⁸Be

⚫**Energy variation with constraint on nuclear quadrupole deformation**

Described by (β, γ)

◆**Procedure of the calculation**

⚫**Energy variation with constraint on nuclear quadrupole deformation**

Actual calculation of HyperAMD

◆**Procedure of the numerical calculation**

A hypernuclei

"Mass-dep. of B^L **and importance of describing core deformation"**

M. Isaka, Y. Yamamoto, Th.A. Rijken , PRC**94**, 044310(2016)

"Effects of L**N spin-dependent force on low-lying excitation spectra"**

M. Isaka, Y. Yamamoto, T. Motoba, Phys. Rev. C**101**, 024301(2020)

Results: B_A as a function of mass number A

HyperAMD calc. with YNG AN interaction for $9 \le A \le 59$ Λ hypernuclei

Averaged Density Approximation (ADA) $\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \qquad k_F = (1+\alpha) \left(\frac{3\pi^2 \langle \rho \rangle}{2} \right)^{1/3}$

Small parameter α is chosen to reproduce B_A of ¹⁶_AO (α = -0.009)

Observed values of B_A are nicely reproduced in wide mass regions

What is essential to reproduce B_A ?

B_A values are reproduced by taken into account nuclear deformation

What is essential to reproduce B_A ?

◆**Description of core deformation**

More sophisticated treatment: GCM calculation on (β, γ) plane Comparison of $B(E2)$ with observed data in ^{11}B

A hypernuclei

"Mass-dep. of B^L **and importance of describing core deformation"**

M. Isaka, Y. Yamamoto, Th.A. Rijken , PRC**94**, 044310(2016)

"Effects of L**N spin-dependent force on low-lying excitation spectra"**

M. Isaka, Y. Yamamoto, T. Motoba, Phys. Rev. C**101**, 024301(2020)

Results: B_A as a function of mass number A

HyperAMD calc. with YNG AN interaction for $9 \le A \le 59$ Λ hypernuclei

Averaged Density Approximation (ADA) $\langle \rho \rangle = \int dr^3 \rho_N({\bf r}) \rho_\Lambda({\bf r}) \; \; \; k_F = (1+\alpha) \left(\frac{3\pi^2 \langle \rho \rangle}{2} \right)^{1/3}$

Small parameter α is chosen to reproduce B_A of ¹⁶_AO (α = -0.009)

Observed values of B_A are nicely reproduced in wide mass regions

Results: B_A as a function of mass number A

• Mass-dependence of B_A is reproduced with describing core deformation

• **However, ground-state spin is inconsistent with exp. in several hypernuclei**

Inconsistent ground-state spin in our previous work

 \bullet Found in 10 _{Λ}B, 11 _{Λ}B, 12 _{Λ}C, 15 _{Λ}N, and 16 _{Λ}O with spin-doublet ground states, **where the core nuclei have non-zero spin ground states**

Coupling of Λ generates ground state doublets

- **Inconsistency originates in different ordering of doublet partner**
- **Ordering is expected to be determined by AN spin-dependent force**

 $V_{\Lambda N}^{\text{central}} = V^{\text{Even}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Even}} + V^{\text{Odd}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Odd}}$ Λ N spin-spin force: $V_{\Lambda N}^{\text{central}} = V^{\text{Even}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Even}} + V^{\text{Odd}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{O}}$ Λ N Spin-orbit (LS) force: $V_{\Lambda N}^{LS} = L \cdot (s_A + s_N) V^{SLS} + L \cdot (s_A - s_N) V^{ALS}$

Aim of this work

 \circ We reveal effects of ΛN spin-dependent (spin-spin & spin-orbit) forces

Tuning of Λ N spin-dependent force

Information on L**N spin-dep. force can be obtained by doublet energies in light** Λ **hypernuclei**

e.g.) spin-spin force in ΛN central force E. Hiyama, and T. Yamada, PPNP**63**, 339(2009), and references therein

In this study, we tune AN spin-dependent force following the above

Figures taken from O. Hashimoto and H. Tamura, PPNP**57** (2006), 564

Results: Tuning of spin-dep. AN forces in HyperAMD $V_{\Lambda N}^{\text{central}} = V^{\text{Even}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Even}} + V^{\text{Odd}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Odd}}$ Central: $\frac{\sigma}{\sigma}$ + V^{out} + $(\sigma \cdot \sigma) V \sigma$ $V_{\Lambda N}^{LS} = L \cdot (s_A + s_N) V^{SLS} + L \cdot (s_A - s_N) V^{ALS}$ LS: **•Adding correction terms** ΔV^E_{σ} **,** ΔV^O_{σ} **to** $\sigma \cdot \sigma$ **parts •LS** is tuned using the $(3/2^+, 5/2^+)$ data of $\frac{9}{4}$ Be (a) ${}_{\Lambda}^{4}H$ (b) λ Li **HyperAMD with YNG-ESC14** Excitation energy [MeV] $+\Delta V_{\sigma}^{E}$ exp original 1.10 $\frac{1.09}{1.09}$ 1 + exp 0.97 $+\Delta V_{\sigma}^{E}+\Delta V_{\sigma}^{O}$ $+\Delta V_{\sigma}^{E}$ $\frac{0.69}{2}$ 3/2⁺ 0.67 original 0.52 0.30 $1/2^+$ Ω -սսսսու () + $1/2^+$

We apply the AN interaction tuned here to p-shell hypernuclei

Results: p-shell Λ hypernuclei

◆**7** L **Li: a well-known p-shell hypernucleus**

- Ground-state doublet (1/2+,3/2+) is used to tune AN spin-spin force, where almost no LS contribution
- Spin-dependent central and LS forces contribute to (5/2⁺ ,7/2⁺) doublet
	- **→ Reproduced by tuned AN force**

Results: p-shell Λ hypernuclei

Tuned AN force systematically reproduces ground state spin & doublet spacing

Doublet ordering and spacing are mainly determined by AN spin-dep. force

Ground-state doublet is consistent with recent J-PARC experiment using Λ N force tuned in $^4_{\Lambda}$ H & $^7_{\Lambda}$ Li

E hypernuclei

"Application of HAL-QCD potential to Ξ^- + ¹⁴N and prediction for 12 _{Ξ}Be"

T. Tada, M. Isaka, M. Kimura, Y. Yamamoto

Theoretical studies on YN interaction

W

Check for
updates

HAL-QCD LL **and** X**N potential near physical q mass**

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics A 998 (2020) 121737

www.elsevier.com/locate/nuclphysa

$\Lambda\Lambda$ and NE interactions from lattice QCD near the physical point

Kenji Sasaki a, b, *, Sinya Aoki a, b, c, Takumi Doi b, d, Shinya Gongyo b, Tetsuo Hatsuda^{d, b}, Yoichi Ikeda^{e, b}, Takashi Inoue^{f, b}, Takumi Iritani^b, Noriyoshi Ishii^{e,b}, Keiko Murano^{e,b}, Takaya Miyamoto^b (HAL QCD Collaboration)

First principles EN potential from HAL QCD

O Even-parity(S-wave) EN potential Sasaki, et al. (HAL QCD Collab.), NPA**998**, 121737 (2020)

3

$$
V(r) = \lambda_1 \mathcal{Y}(\rho_1, m_\pi, r) + \lambda_2 [\mathcal{Y}(\rho_2, m_\pi, r)]^2 + \sum_{i=1}^n \alpha_i e^{-r^2/\beta_i^2}
$$

- Short range repulsion: Gauss function
- Long range part (meson exchange): Yukawa function

\circ HAL QCD EN potential has been applied to NNNE

E. Hiyama, et al., PRL**124**, 092501(2020)

⇒ Very shallow binding was predicted

Aim of this work

- \circ We examine the HAL QCD potential applying to the Ξ^- + ¹⁴N system
- \circ We predict the Ξ^- + ¹¹B spectrum for the forthcoming experiment

Odd-parity potential has not been derived by HAL QCD

Ansatz in this study

$$
V(r) = \lambda_1 \mathcal{Y}(\rho_1, m_\pi, r) + \lambda_2 [\mathcal{Y}(\rho_2, m_\pi, r)]^2 + X \sum_{i=1}^3 \alpha_i e^{-r^2/\beta_i^2}
$$

○ Long range part: Same as even-parity force (Wigner type) No S=-2 transfer by one-meson exchange \Rightarrow Winger term, even=odd

○ Short range part: Unknown

We assume the same potential as even-parity force, but multiply a factor X This factor is calibrated by the comparison with the recent exp. data

Results: comparison with emulsion data of Ξ^- + ¹⁴N

HAL QCD (only even-parity force) slightly underbound s- and p-wave states

Results: comparison with emulsion data of Ξ^- + ¹⁴N

 \circ B_Ξ are consistent with exp by odd-parity force. Small uncertainty from short range part ○ HAL QCD yields much smaller doublet splitting than Nijmegen potential ESC08c

Results: Prediction for the Ξ^- + ¹¹B system (J-PARC E70)

Results: $EN \rightarrow \Lambda\Lambda$ conversion width

Summary

⚫ Future works:

- \bullet HyperAMD with G-matrix interactions is applied to Λ and Ξ hypernuclei
- \bullet Λ hypernuclei: various Λ hypernuclei, Nijmegen ESC potential
	- Mass dep. of B_Λ is reproduced by describing core deformation
	- Doublet ordering and spacing are determined by ΛN spin dependent force
- \bullet E hypernuclei: $E^- + {}^{14}N$ and $E^- + {}^{11}B$ states, HAL QCD EN potential

By introducing phenomenological odd potential based on meson exchange picture,

- KISO & IBUKI are reproduced and B_{Ξ} for Ξ_s is consistent with IRRAWADDY
- Low-lying states of 12 _{Ξ}Be are predicted: B $_{\Xi}$ \simeq 3.6 MeV for g.s.
	- Λ hypernuclei: detailed analysis of $^{19}{}_{\Lambda}$ F
	- E hypernuclei: level structure, production cross section