Low-lying structure of p-sd shell hypernuclei and YN interaction with Antisymmetrized Molecular Dynamics

Today: not only Λ hypernuclei but also Ξ hypernuclei

Masahiro Isaka

Hosei University

Recent developments in hypernuclear physics

Experiments

●A hypernuclei

- Mass dependence of B_Λ
- Level structure
- Future exp at J-PARC, JLab, etc.

● E hypernuclei

Nakazawa, et al., PTEP (2015) Hayakawa, et al.,PRL (2021)

- \bullet B_{Ξ} from emulsion data
- High resolution ¹²C(K⁻, K⁺)¹²_ΞBe experiment planned at J-PARC etc.

O. Hashimoto and H. Tamura, PPNP **57** (2006), 564.

Situation: Λ hypernuclei

Binding energy of Λ particle, B_{Λ}

Level structure of Λ hypernuclei from γ -ray spectroscopy data

O. Hashimoto and H. Tamura, PPNP 57 (2006), 564.

Situation: Λ hypernuclei

◆Future experiments at J-PARC, JLab, *etc*.

- Heavier(sd-shell) & n-rich hypernuclei can be produced
- •Various structures will appear

Structure of hypernuclei can affect the observables of hypernuclei

Situation: Ξ hypernuclei

$\blacklozenge B_{\Xi}$ obtained in $\Xi^- + {}^{14}N$ states

p-state has been identified

KISO & IBUKI events
 interpreted as Ξ⁻ in p-state

K. Nakazawa, et al., PTEP**2015**, 033D02(2015) S.H. Hayakawa, et al., PRL**126**, 062501(2021)

Deeply bound states have been found ⇒ s-state candidate

o IRRAWADDY & KINKA events

Yoshimoto, et al., arXiv:2103.08793v1

Theoretical studies on YN interaction

♦ΛN

Interaction models have been developed by comparing with expt.

- Few-body calculations
- Shell model studies ... etc.

O. Hashimoto and H. Tamura, PPNP **57** (2006), 564 E. Hiyama, and T. Yamada, PPNP**63**, 339(2009)

D.J. Millener, NPA**691** (2001) 93c, Nuclear Phys. A**754** (2005) 48c

ΛN interaction used in this study

We use G-matrix interaction derived from Nijmegen potential (YNG)

- Nijmegen potential: a meson exchange model
- G-matrix calculation takes into account medium effects
- YNG interaction depends on Fermi momentum k_F through nuclear density mainly coming from $\Lambda N\mathcal{N}\Sigma N$ coupling effects

k_F can be calculated from density e.g. Averaged Density Approximation (ADA) $\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \quad k_F = \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$

Theoretical studies on YN interaction

$\Lambda\Lambda$ and NE interactions from lattice QCD near the physical point

Kenji Sasaki ^{a,b,*}, Sinya Aoki ^{a,b,c}, Takumi Doi ^{b,d}, Shinya Gongyo ^b, Tetsuo Hatsuda ^{d,b}, Yoichi Ikeda ^{e,b}, Takashi Inoue ^{f,b}, Takumi Iritani ^b, Noriyoshi Ishii ^{e,b}, Keiko Murano ^{e,b}, Takaya Miyamoto ^b (HAL QCD Collaboration)

We also use G-matrix interaction derived from HAL QCD \equiv N potential to examine it in $\equiv^- + {}^{14}N$

●∧ hypernuclei

"Mass-dep. of B_{Λ} and importance of describing core deformation" M. Isaka, Y. Yamamoto, Th.A. Rijken , PRC**94**, 044310(2016)

"Effects of ΛN spin-dependent force on low-lying excitation spectra"

M. Isaka, Y. Yamamoto, T. Motoba, Phys. Rev. C**101**, 024301(2020)

● E hypernuclei

"Application of HAL-QCD potential to $\Xi^- + {}^{14}N$ and prediction for ${}^{12}{}_{\Xi}Be$ "

T. Tada, <u>M. Isaka</u>, M. Kimura, Y. Yamamoto

We apply an extended version of antisymmetrized molecular dynamics for hypernuclei (HyperAMD) to Λ and Ξ hypernuclei.

M.I., *et al.*, PRC**83**(2011) 044323 M. I., *et al.*, PRC**83**(2011) 054304

HyperAMD: Antisymmetrized Molecular Dynamics for hypernuclei

Hamiltonian

$$\widehat{H} = \widehat{T}_N + \widehat{V}_{NN} + \widehat{T}_Y + \widehat{V}_{YN} - \widehat{T}_g$$

NN: Gogny D1S (and Volkov No.2 in several Λ hypernuclei) YN: G matrix interaction (YNG) derived from

- Nijmegen ESC14 (ΛN) for Λ hypernuclei
- HAL (ΞN) for Ξ hypernuclei

Wave function

• Nucleon part : Slater determinant Spatial part of s.-p. w.f. is described as Gaussian packets

• Single-particle w.f. of hyperon:

Superposition of Gaussian packets

• **Total w.f.**:
$$\psi(\vec{r}) = \sum_{m} c_m \phi_m(r_Y) \otimes \frac{1}{\sqrt{A!}} \det[\phi_i(\vec{r}_j)]$$

$$\varphi_N(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_i(\vec{r}_j)]$$
$$\varphi_i(r) \propto \exp\left[-\sum_{\sigma=x,y,z} v_\sigma (r - Z_i)_\sigma^2\right] \chi_i \eta_i$$
$$\chi_i = \alpha_i \chi_\uparrow + \beta_i \chi_\downarrow$$

$$\phi_Y(r) = \sum_m c_m \phi_m(r)$$

$$\varphi_m(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_\sigma (r - z_m)_\sigma^2\right] \chi_m$$

$$\chi_m = a_m \chi_\uparrow + b_m \chi_\downarrow$$

Procedure of the calculation

- Imaginary time development method: $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$
 - Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Procedure of the calculation

e.g.) ⁸Be

•Energy variation with constraint on nuclear quadrupole deformation

Described by (β, γ)

Procedure of the calculation

e.g.) ⁸Be

•Energy variation with constraint on nuclear quadrupole deformation

Described by (β, γ)

Procedure of the calculation

•Energy variation with constraint on nuclear quadrupole deformation

Actual calculation of HyperAMD

Procedure of the numerical calculation

Λ hypernuclei

"Mass-dep. of B_{Λ} and importance of describing core deformation"

M. Isaka, Y. Yamamoto, Th.A. Rijken , PRC94, 044310(2016)

"Effects of ΛN spin-dependent force on low-lying excitation spectra"

M. Isaka, Y. Yamamoto, T. Motoba, Phys. Rev. C101, 024301(2020)

Results: B_{Λ} as a function of mass number A

• HyperAMD calc. with YNG Λ N interaction for 9 $\leq A \leq$ 59 Λ hypernuclei

Averaged Density Approximation (ADA) $\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \qquad k_F = (1+\alpha) \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$

Small parameter α is chosen to reproduce B_{\Lambda} of ${}^{\rm 16}{}_{\Lambda}$ O (α = -0.009)

	β	γ	$\langle \rho \rangle$	k_F	$-B_{\Lambda}^{\text{calc}}$	$-B_{\Lambda}^{\exp}$
$^{9}_{\Lambda}$ Li	0.50	2°	0.072	1.01	-8.1	-8.50 ± 0.12
$^9_{\Lambda}{ m Be}$	0.87	1°	0.060	0.95	-8.0	-6.71 ± 0.04
$^{9}_{\Lambda}\mathrm{B}$	0.45	2°	0.072	1.01	-8.1	-8.29 ± 0.18
$^{10}_{\Lambda}{ m Be}$	0.57	1°	0.077	1.04	-8.9	-9.11 ± 0.22
						-8.55 ± 0.18
$^{10}_{\Lambda}{ m B}$	0.58	1°	0.075	1.03	-9.1	-8.89 ± 0.12
$^{11}_{\Lambda}{ m B}$	0.50	29°	0.081	1.05	-10.4	-10.24 ± 0.05
$^{12}_{\Lambda}{ m B}$	0.39	48°	0.083	1.06	-11.2	-11.37 ± 0.06
						-11.38 ± 0.02
$^{12}_{\Lambda}C$	0.41	34°	0.086	1.07	-10.9	-10.76 ± 0.19
$^{13}_{\Lambda}C$	0.45	60°	0.090	1.09	-11.6	-11.69 ± 0.19
$^{14}_{\Lambda}C$	0.45	31°	0.093	1.10	-12.4	-12.17 ± 0.33
$^{15}_{\Lambda}N$	0.28	60°	0.098	1.12	-12.9	-13.59 ± 0.15
$^{16}_{\Lambda}O$	0.02	_	0.105	1.15	-13.0	-12.96 ± 0.05
$^{19}_{\Lambda}O$	0.30	3°	0.110	1.17	-14.3	_
$^{21}_{\Lambda}$ Ne	0.46	0°	0.106	1.15	-15.4	_
$^{25}_{\Lambda}{ m Mg}$	0.478	21°	0.116	1.19	-16.1	_
$^{27}_{\Lambda}{ m Mg}$	0.36	36°	0.125	1.22	-16.4	_
$^{28}_{\Lambda}{ m Si}$	0.32	53°	0.125	1.22	-16.7	-17.1 ± 0.02
$^{32}_{\Lambda}{ m S}$	0.28	0°	0.130	1.23	-17.8	-18.0 ± 0.5
$^{40}_{\Lambda}{ m K}$	0.01	_	0.136	1.25	-19.6	_
$^{40}_{\Lambda}$ Ca	0.03	_	0.136	1.25	-19.5	-19.24 ± 1.1
$^{41}_{\Lambda}$ Ca	0.13	12°	0.136	1.25	-19.7	_
$^{48}_{\Lambda}{ m K}$	0.01	_	0.141	1.27	-20.4	_
$^{51}_{\Lambda}V$	0.18	2°	0.151	1.30	-20.8	-20.51 ± 0.13
$^{59}_{\Lambda}$ Fe	0.26	23°	0.142	1.27	-22.0	_

Observed values of B_{Λ} are nicely reproduced in wide mass regions

What is essential to reproduce B_{Λ} ?

 B_{Λ} values are reproduced by taken into account nuclear deformation

What is essential to reproduce B_{Λ} ?

Description of core deformation

More sophisticated treatment: GCM calculation on (β , γ) plane Comparison of B(E2) with observed data in ¹¹B

Λ hypernuclei

"Mass-dep. of B_{Λ} and importance of describing core deformation"

M. Isaka, Y. Yamamoto, Th.A. Rijken , PRC94, 044310(2016)

"Effects of AN spin-dependent force on low-lying excitation spectra"

M. Isaka, Y. Yamamoto, T. Motoba, Phys. Rev. C101, 024301(2020)

Results: B_{Λ} as a function of mass number A

• HyperAMD calc. with YNG Λ N interaction for 9 $\leq A \leq$ 59 Λ hypernuclei

Averaged Density Approximation (ADA) $\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \quad k_F = (1+\alpha) \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$

Small parameter α is chosen to reproduce ${\sf B}_{\Lambda}$ of ${}^{\rm 16}{}_{\Lambda}{\sf O}$ (α = -0.009)

	β	γ	$\langle \rho \rangle$	k_F	$-B_{\Lambda}^{\text{calc}}$	$-B^{ m exp}_{\Lambda}$
$^{9}_{\Lambda}$ Li	0.50	2°	0.072	1.01	-8.1	-8.50 ± 0.12
$^9_{\Lambda}{ m Be}$	0.87	1°	0.060	0.95	-8.0	-6.71 ± 0.04
$^{9}_{\Lambda}\mathrm{B}$	0.45	2°	0.072	1.01	-8.1	-8.29 ± 0.18
$^{10}_{\Lambda}$ Be	0.57	1°	0.077	1.04	-8.9	-9.11 ± 0.22
						-8.55 ± 0.18
$^{10}_{\Lambda}{ m B}$	0.58	1°	0.075	1.03	-9.1	-8.89 ± 0.12
$^{11}_{\Lambda}{ m B}$	0.50	29°	0.081	1.05	-10.4	-10.24 ± 0.05
$^{12}_{\Lambda}{ m B}$	0.39	48°	0.083	1.06	-11.2	-11.37 ± 0.06
						-11.38 ± 0.02
$^{12}_{\Lambda}C$	0.41	34°	0.086	1.07	-10.9	-10.76 ± 0.19
$^{13}_{\Lambda}C$	0.45	60°	0.090	1.09	-11.6	-11.69 ± 0.19
$^{14}_{\Lambda}C$	0.45	31°	0.093	1.10	-12.4	-12.17 ± 0.33
$^{15}_{\Lambda}N$	0.28	60°	0.098	1.12	-12.9	-13.59 ± 0.15
$^{16}_{\Lambda}O$	0.02	_	0.105	1.15	-13.0	-12.96 ± 0.05
$^{19}_{\Lambda}O$	0.30	3°	0.110	1.17	-14.3	_
$^{21}_{\Lambda}$ Ne	0.46	0°	0.106	1.15	-15.4	_
$^{25}_{\Lambda}Mg$	0.478	21°	0.116	1.19	-16.1	_
$^{27}_{\Lambda} Mg$	0.36	36°	0.125	1.22	-16.4	_
$^{28}_{\Lambda}$ Si	0.32	53°	0.125	1.22	-16.7	-17.1 ± 0.02
$^{32}_{\Lambda}S$	0.28	0°	0.130	1.23	-17.8	-18.0 ± 0.5
$^{40}_{\Lambda}$ K	0.01	_	0.136	1.25	-19.6	_
$^{40}_{\Lambda}$ Ca	0.03	_	0.136	1.25	-19.5	-19.24 ± 1.1
${}^{41}_{\Lambda}$ Ca	0.13	12°	0.136	1.25	-19.7	_
$^{48}_{\Lambda}$ K	0.01	_	0.141	1.27	-20.4	_
${}^{51}_{\Lambda}V$	0.18	2°	0.151	1.30	-20.8	-20.51 ± 0.13
$^{59}_{\Lambda}$ Fe	0.26	23°	0.142	1.27	-22.0	_

Observed values of B_{Λ} are nicely reproduced in wide mass regions

Results: B_{Λ} as a function of mass number A

	$\langle \rho \rangle$	k _F	Based on ESC12 [17]			Based on ESC14				Expt.		
			V _{BB}	only	w/]	MBE	V _{BB}	only	w/ 1	MBE	J^{π}	$-B_{\Lambda}^{\exp}$
			J^{π}	$-B_{\Lambda}$	J^{π}	$-B_{\Lambda}$	J^{π}	$-B_{\Lambda}$	J^{π}	$-B_{\Lambda}$		
$^{9}_{\Lambda}$ Li(*)	0.072	1.02	5/2+	-7.9	5/2+	-8.1	5/2+	-7.6	5/2+	-8.1		-8.50 ± 0.12 [34]
⁹ _A Be	0.060	0.96	$1/2^{+}$	-7.9	$1/2^{+}$	-8.1	$1/2^{+}$	-7.7	$1/2^{+}$	-8.1	$1/2^{+}$	-6.71 ± 0.04 [28]
${}^{9}_{\Lambda}B(*)$	0.072	1.02	$5/2^{+}$	-8.0	$5/2^{+}$	-8.2	$5/2^{+}$	-7.7	$5/2^{+}$	-8.2		-8.29 ± 0.18 [34]
$^{10}_{\Lambda}Be(*)$	0.077	1.04	2-	-8.7	2-	-9.0	2-	-8.6	2-	-9.0		-9.11 ± 0.22 [31],
									_			-8.55 ± 0.18 [37]
${}^{10}_{\Lambda}B(*)$	0.075	1.04	2-	-8.9	2-	-9.2	2-	-8.7	2-	-9.1	1- [38,39]	-8.89 ± 0.12 [28]
${}^{11}_{\Lambda}B(*)$	0.081	1.05	7/2+	-9.8	7/2+	-10.1	7/2+	-9.7	$7/2^{+}$	-10.0	5/2+ [40]	-10.24 ± 0.05 [28]
$^{12}_{\Lambda}B(*)$	0.083	1.07	2-	-11.0	2-	-11.3	2-	-11.0	2-	-11.3	1- [41-43]	-11.37 ± 0.06 [28],
												-11.38 ± 0.02 [36]
$^{12}_{\Lambda}C(*)$	0.086	1.08	2^{-}	-10.7	2-	-11.0	2-	-10.8	2^{-}	-11.0	1^{-} [44]	-10.76 ± 0.19 [34]
$^{13}_{\Lambda}C(*)$	0.090	1.10	$1/2^{+}$	-11.3	$1/2^{+}$	-11.6	$1/2^{+}$	-11.5	$1/2^{+}$	-11.7	$1/2^{+}$	-11.69 ± 0.19 [31]
$^{14}_{\Lambda}C(*)$	0.093	1.11	0-	-12.4	0-	-12.5	0-	-12.4	0-	-12.5		-12.17 ± 0.33 [34]
$^{15}_{\Lambda}N$	0.098	1.13	$1/2^{+}$	-12.6	$1/2^{+}$	-12.9	$1/2^{+}$	-12.9	$1/2^{+}$	-12.9	3/2+ [38]	-13.59 ± 0.15 [28]
¹⁶ O(*)	0.105	1.16	0-	-12.7	0-	-13.0	1-	-13.3	1-	-13.0	0- [45]	-12.96 ± 0.05 [32] [†]
190	0 1 1 0	1 10	1 /0+	110	1 /0+	14.2	1 /0+	14.0	1./0+	14.2		

• Mass-dependence of B_{Λ} is reproduced with describing core deformation

• However, ground-state spin is inconsistent with exp. in several hypernuclei

Inconsistent ground-state spin in our previous work

• Found in ${}^{10}_{\Lambda}B$, ${}^{11}_{\Lambda}B$, ${}^{12}_{\Lambda}B$, ${}^{12}_{\Lambda}C$, ${}^{15}_{\Lambda}N$, and ${}^{16}_{\Lambda}O$ with spin-doublet ground states, where the core nuclei have non-zero spin ground states

Coupling of Λ generates ground state doublets

- **Inconsistency originates in different ordering of doublet partner**
- Ordering is expected to be determined by ΛN spin-dependent force

 $\Lambda N \text{ spin-spin force:} V_{\Lambda N}^{\text{central}} = V^{\text{Even}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Even}} + V^{\text{Odd}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Odd}}$ AN Spin-orbit (LS) force: $V_{AN}^{LS} = \mathbf{L} \cdot (\mathbf{s}_A + \mathbf{s}_N) V^{SLS} + \mathbf{L} \cdot (\mathbf{s}_A - \mathbf{s}_N) V^{ALS}$

Aim of this work

• We reveal effects of ΛN spin-dependent (spin-spin & spin-orbit) forces

Tuning of ΛN spin-dependent force

Information on ΛN spin-dep. force can be obtained by doublet energies in light Λ hypernuclei E. Hiyama, and T. Yamada, PPNP**63**, 339(2009),

e.g.) spin-spin force in ΛN central force and references therein $V_{\Lambda N}^{\text{central}} = V^{\text{Even}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Even}} + V^{\text{Odd}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Odd}}$ Core nucleus ⁶Li 7/27 Example: ${}^{4}_{\Lambda}H$ M1 (MeV) 5/2+ 1/2**-n-n**-0s -<u>/</u>- 0s M1 2.186 ^{3}H 3 H(J^{π} = 1/2⁺) \otimes Λ (S = 1/2) $,3/2^{+}$ 1+ 0 E2M1 Even state force dominated $^{4}_{\Lambda}H$ ⁶Li .1/2+ Doublet by spin-spin force (MeV) ⁶Li ⁷_∧Li

In this study, we tune ΛN spin-dependent force following the above

Figures taken from O. Hashimoto and H. Tamura, PPNP57 (2006), 564

Results: Tuning of spin-dep. ΛN forces in HyperAMD $V_{\Lambda N}^{\text{central}} = V^{\text{Even}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Even}} + V^{\text{Odd}} + (\sigma \cdot \sigma) V_{\sigma}^{\text{Odd}}$ Central: $V_{\Lambda N}^{LS} = \mathbf{L} \cdot (\mathbf{s}_{\Lambda} + \mathbf{s}_{N}) V^{SLS} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} - \mathbf{s}_{N}) V^{ALS}$ LS: •Adding correction terms ΔV_{σ}^{E} , ΔV_{σ}^{O} to $\sigma \cdot \sigma$ parts •LS is tuned using the $(3/2^+, 5/2^+)$ data of ${}^9_{\Lambda}$ Be (a) ${}^4_{\Lambda}$ H (b) $^{7}_{\Lambda}$ Li HyperAMD with YNG-ESC14 Excitation energy [MeV] $+\Delta V_{\sigma}^{E}$ exp original 1.10 1.09 exp 0.97 $+\Delta V_{\sigma}^{E} + \Delta V_{\sigma}^{O}$ $+\Delta V_{\sigma}^{E}$ 0.69 3/2+ 0.67 original 0.52 0.30 $1/2^{+}$ 0 -0^{+} $1/2^+$

We apply the AN interaction tuned here to p-shell hypernuclei

Results: p-shell Λ hypernuclei

\bullet^{7}_{Λ} Li: a well-known p-shell hypernucleus

- Ground-state doublet $(1/2^+, 3/2^+)$ is used to tune ΛN spin-spin force, where almost no LS contribution
- Spin-dependent central and LS forces contribute to (5/2⁺,7/2⁺) doublet
 - Reproduced by tuned ΛN force

Results: p-shell Λ hypernuclei

Tuned ΛN force systematically reproduces ground state spin & doublet spacing

Doublet ordering and spacing are mainly determined by ΛN spin-dep. force

Ground-state doublet is consistent with recent J-PARC experiment using ΛN force tuned in ${}^4_\Lambda H$ & ${}^7_\Lambda Li$

Ξ hypernuclei

"Application of HAL-QCD potential to $\Xi^- + {}^{14}N$ and prediction for ${}^{12}{}_{\Xi}Be$ "

T. Tada, M. Isaka, M. Kimura, Y. Yamamoto

Theoretical studies on YN interaction

Check for updates

HAL-QCD $\Lambda\Lambda$ and ΞN potential near physical q mass

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics A 998 (2020) 121737

www.elsevier.com/locate/nuclphysa

$\Lambda\Lambda$ and NE interactions from lattice QCD near the physical point

Kenji Sasaki ^{a,b,*}, Sinya Aoki ^{a,b,c}, Takumi Doi ^{b,d}, Shinya Gongyo ^b, Tetsuo Hatsuda ^{d,b}, Yoichi Ikeda ^{e,b}, Takashi Inoue ^{f,b}, Takumi Iritani ^b, Noriyoshi Ishii ^{e,b}, Keiko Murano ^{e,b}, Takaya Miyamoto ^b (HAL QCD Collaboration)

First principles ΞN potential from HAL QCD

O Even-parity(S-wave) 三N potential Sasaki, et al. (HAL QCD Collab.), NPA998, 121737 (2020)

3

$$V(r) = \lambda_1 \mathcal{Y}(\rho_1, m_{\pi}, r) + \lambda_2 [\mathcal{Y}(\rho_2, m_{\pi}, r)]^2 + \sum_{i=1}^{2} \alpha_i e^{-r^2/\beta_i^2}$$

- Short range repulsion: Gauss function
- Long range part (meson exchange): Yukawa function

$o~\text{HAL}~\text{QCD}~\Xi\text{N}$ potential has been applied to $\text{NNN}\Xi$

E. Hiyama, et al., PRL124, 092501(2020)

⇒ Very shallow binding was predicted

Aim of this work

- $\circ~$ We examine the HAL QCD potential applying to the Ξ^- + $^{14}\mathrm{N}$ system
- We predict the Ξ^- + ¹¹B spectrum for the forthcoming experiment

Odd-parity potential has not been derived by HAL QCD

Ansatz in this study

$$V(r) = \lambda_1 \mathcal{Y}(\rho_1, m_{\pi}, r) + \lambda_2 [\mathcal{Y}(\rho_2, m_{\pi}, r)]^2 + \frac{X}{\sum_{i=1}^3} \alpha_i e^{-r^2/\beta_i^2}$$

O Long range part: Same as even-parity force (Wigner type)
 No S=-2 transfer by one-meson exchange ⇒ Winger term, even=odd

o Short range part: Unknown

We assume the same potential as even-parity force, but multiply a factor X This factor is calibrated by the comparison with the recent exp. data

Results: comparison with emulsion data of Ξ^- + ¹⁴N

HAL QCD (only even-parity force) slightly underbound s- and p-wave states

Results: comparison with emulsion data of Ξ^- + ¹⁴N

• B_{Ξ} are consistent with exp by odd-parity force. Small uncertainty from short range part • HAL QCD yields much smaller doublet splitting than Nijmegen potential ESC08c

Results: Prediction for the Ξ^- + ¹¹B system (J-PARC E70)

Results: $\Xi N \rightarrow \Lambda \Lambda$ conversion width

	Potential	Jπ	B _Ξ [MeV]	Width [MeV]	
	HAL (even)	1/2+	5.20	0.12	
\pm + \pm N states		3/2+	5.27	0.14	
(프 in sistate)	ESC08c	1/2+	7.18	1.79	
		3/2+	6.09	1.94	
$\Xi^- \pm 14$ NL states	HAL (even)	1/2-	0.09	0.07	
$\Box + N$ states $(\Xi^{-} \text{ in n state})$		3/2-	0.10	0.07	
(E in p state)	ESC08c	1/2-	4.45	1.64	
		3/2-	4.47	1.56	
	HAL (even)	1-	2.82	0.12	
Ξ^- + ¹¹ B states		2-	2.82	0.11	
(Ξ^- in s state)	ESC08c	1-	4.02	1.49	
		2-	4.44	1.43	

Summary

• Future works:

- HyperAMD with G-matrix interactions is applied to Λ and Ξ hypernuclei
- Λ hypernuclei: various Λ hypernuclei, Nijmegen ESC potential
 - Mass dep. of B_Λ is reproduced by describing core deformation
 - Doublet ordering and spacing are determined by ΛN spin dependent force
- Ξ hypernuclei: Ξ^- + ¹⁴N and Ξ^- + ¹¹B states, HAL QCD Ξ N potential

By introducing phenomenological odd potential based on meson exchange picture,

- KISO & IBUKI are reproduced and B_{Ξ} for Ξ_{s} is consistent with IRRAWADDY
- Low-lying states of ${}^{12}{}_{\Xi}$ Be are predicted: $B_{\Xi} \simeq 3.6$ MeV for g.s.
 - Λ hypernuclei: detailed analysis of ${}^{19}{}_{\Lambda}$ F
 - Ξ hypernuclei: level structure, production cross section