X-ray measurement of kaonic He-3,4 atoms with a high-resolution microcalorimeter

Tadashi Hashimoto (JAEA) for the J-PARC E62 collaboration

Joint THEIA-STRONG2020 and JAEA/Mainz REIMEI Web-Seminar @ Apr. 15, 2021

Study of K-nucl. interaction

Kaonic atom X-rays

Unique probe of the K^{bar}-nucleus strong interaction at the threshold energy

Kaonic atom X-rays

- Kaonic hydrogen, deuterium \rightarrow K^{bar}N scattering length

 Heavier atoms → Attractive optical potential global repulsion from a large imaginary part

K-He theoretical calculation

- Is there large shift > 1 eV, and width > 5 eV ?
 - if yes, optical potential models can not explain.
- Sign of the shift ?
 - attractive shift would suggest no p-wave nuclear bound state.

K-atom experiments @ J-PARC K1.8BR

		K-d (E57)	K- ^{3/4} He (E62)	
X-ray transition		2p → 1s	3d → 2p	
	Energy	~ 8 keV	~ 6 keV	
Width		~ 1000 eV	~ 2 eV	
	Yield (per stopped K-)	~ 0.1 % (0.04% of liquid D2 density)	~ 7 % (Liquid He)	
X-ray detector		SDD	TES	
	FWHM resolution	~ 150 eV	~ 5 eV	
	Effective area	~ 200 cm ²	~ 0.2 cm ²	
Physics		K ^{bar} N (I=1)	K ^{bar} -nucleus potential	

Transition-Edge-Sensor microcalorimeters

✓ Excellent energy resolution with a reasonable dynamic range
Resolution: ~ 5 eV FWHM @ 6 keV. Dynamic range: 4-15 keV

NIST(US) TES spectrometer for E62

Review of Scientific Instruments 88, 053108 (2017)

- Cooled down to 70 mK with ADR & pulse tube.
- 240 pixel: 8 columns x 30 rows time-division multiplexing (TDM) readout
- ~23 mm², Mo/Cu + Bi 4um (85% eff.@6 keV)
- First case to operate in a hadron beam environment.

HPD 102 DENALI

Date of Test Start: 12/29/15 **Operator: David Hollander/Hans Bickling** Test ID: CD3MGA Job Number: s13202 Customer: QD Japan, Tokyo Metro University Cryostat Model Number: 102 Cryostat Serial Number: p04102-50 102 DENALI Pulse Tube ADR Cryostat Magnet Current: 20 Amps Vacuum Jacket Size 33 cm X 22 cm X **De-Mag Start Temps:** 66 cm Tall FAA = 2.83 KExperimental Volume GGG = 2.76 K24 cm X 15 cm X 1st Stage = 56.9 K 14 cm Tall 2nd Stage = 2.97 K 1st Stage Cooling Power 25 W @ 55 K Base Temps after De-Mag: FAA = 41 mKGGG = 0.475 K2nd Stage Cooling Power 0.7 W @ 4.2 K GGG Cooling Capacity • Base temps: 1.2 J @ 1 K < 40 mK @ FAA ADR Base Temperature < 500 mK@ GGG < 50 mK

FAA Cooling Capacity 118 mJ @ 100 mK

History of the project

11

2013	Start collaboration with NIST
2014	Demonstration experiment @ PSI (pionic atom) JLTP 184(3), 930-937, 2016; PTEP 2016, 091D01, 2016.
2015	Approved as J-PARC E62
2016	Commissioning with K ⁻ beam @ J-PARC IEEE Trans. Appl. Supercond. 27(4), 1-5, 2017.
2017	
2018	Physics data taking for K- atom @ J-PARC J. Low Temp. Phys. 199, 1018–1026 (2020)
	physics paper in preparation

PSI v.s. J-PARC

	PSI	J-PARC	
location	Villigen, Switzerland	Tokai, Japan	
beam line	πM1	K1.8BR	
particle	π -	K-	
purity	~ 0.4	~ 0.2	
momentum	170 MeV/c	900 MeV/c	
intensity (sum of all particles)	1.4 ~ 2.8 * 10 ⁶ cps	8 *10 ⁵ / spill	
X-rays from hadronic atom	π ¹² C 4-3: 6.4 keV	K ³ He 3-2: 6.2 keV K ⁴ He 3-2: 6.4 keV	
science X-ray rate	~ 200 / hour	~ 200 / week	

Easier to start with pion beam at PSI

Challenges in a hadron beam

✓ Reduction of the beam-particle hit is essentially important

✓ Analysis to distinguish X-ray/Charged particle hits, cross-talk events

J-PARC E62 K- $^{3/4}$ He 3d \rightarrow 2p with TES

completed in June 2018, ~18 days

J-PARC E62 collaboration High-resolution Exotic Atom x-ray spectroscopy with TES

Nuclear physicists + TES experts + Astro physicists Nuclear physicists + TES experts (NIST+) + Astro-physicists (TMU+)

71 collaborators in total

E62 setup

TES & He target cell

Target region with shield, MLI, SDDs

TES system

SDD

Liq. He system

X-ray tube

Cu degrader

K- beam

Operation of cryogenic systems

(28 He refills & 27 mag cycles)

 \checkmark X-ray tube was always ON during the experiment

 \checkmark Run-by-run (2 hours), pixel-by-pixel calibration

H. Tatsuno et al., Jour. Low Temp. Phys., 184(3), 930-937, 2016.

TES in-beam performance

Detector response is well described by a gaussian and a low-energy exponential tail

Resolution geometrical map

Resolution at CoKa no box : doesn't work at all (12 pixel)

Preliminary result : time vs. energy

Preliminary result: final spectra

Asynchronous background contribution is negligible

Most of background come from stopped kaon absorptions

Preliminary result: fitting

- Voigt (Gaussian*Lorentzian) + Low-energy tail + Background
 - Resolution, Tail parameters are estimated from Ka lines
 - 4 free parameters: mean, gamma, amplitude, background

Comparison with past experiments

Systematic errors

[eV]	³ He shift	³ He width	⁴ He shift	⁴ He width	
stat.	0.37	0.90	0.28	0.65	
syst.	0.19	0.44	0.11	0.42	quad. sum
absolute calib.	0.17		0.09		energy dependent
resolution	0.01	0.30	0.01	0.20	energy dependent
timing cut	0.05		0.05		0.1/0.2 eV error for resolution
tail	0.03	0.10	0.01	0.10	fraction ±10%, length ±20%
background	0.02	0.20	0.02	0.20	compare pol0/pol1/pol2
fit range	0.01	0.20	0.01	0.01	min / max
binning	0.05	0.10	0.03	0.30	0.5/1/2 eV bin, shift half a bin

- Precision of the absolute energy scale is the dominant systematics
- Systematical error < Statistical error

Comparison with a theoretical calc.

by J. Yamagata-Sekihara and S. Hirenzaki

- Chiral potential [Ramos, Oset, NPA671(2000)481]
 Phenomenological potential [Mares, Friedman, Gal, NPA770(2006)84]
- Realistic charge density distribution for ³He&⁴He by E. Hiyama

• Our result is comparable to the values based on optical potentials

• Zero or attractive shift in K⁴He would support no p-wave nuclear state

Systematics from Kaon mass

SDD spectra in $E62_{Cu K_{\alpha}} < 200 \text{ eV FWHM } @ 6 \text{ keV}$

SDDs were installed as a reference and test for E57(K-d)

• Relative yield of $L\alpha/L\beta/L\gamma$ will be extracted

Outlook: TES

- Present system is applicable up to 15 keV, limited by TES saturation and stopping power of 4 um thick Bi absorber
 - Light kaonic atoms (K⁻ Li 6/7)
 - Kaon mass (K-N, K-Ne, …)
- New system for higher energy up to 100 keV region is under development for muonic atom project (QED test under strong electric field)
 - Upper level of high-Z kaonic atoms to separate 1N/mN contributions (proposed in NPA 915 (2013) 170–178)
 - Ξ -atoms (Ξ -C) etc...

TES under development $\alpha \equiv \frac{d \ln R}{d \ln T} \sim 10^{2 \sim 3} \Delta E = \sqrt{\frac{k_B T^2 C}{\alpha}^{34}}$

	J-PARC F62	α =	$\equiv \frac{d \ln R}{d \ln T} \qquad \Delta E = \sqrt{\frac{k_B T^2}{\alpha}}$	$\overline{EC} \qquad E_{max} \sim CT_C/\alpha$
xperiment purpose	present	Gamma-ray TESs	QED TESs	Future TESs
Energy	15 keV	130 keV	$\sqrt{k_B \mathfrak{R}}$	20 keV
Lines of interest	µ-Ne @ 6 keV	μ-C @ 75.3 keV	$\Delta E = \sqrt{\frac{E}{\mu - A_{I} \alpha E}} \frac{E}{\mu - A_{I} \alpha E} \frac{E}{\mu - A_{I} $	$lpha$ μ -Li @ 18.70 keV
		μ-N @ 102.7 keV	μ-Ar @ 20 keV	μ-C @ 18.83 keV
		μ-O @ 134.35 keV		
Saturation energy	20 keV	150 keV	$E_{max} \sim CT_C^{70}/\epsilon^{10}$	50 keV
Absorber material	Bi	Sn foil	Au/Bi	Au/Bi
Absorber thickness	4 um	120 ~ 250 um	3 um / 15 um	1.5 um / 15 um
Absorber area	320 um x 305 um	1.3 mm x 1.3 mm	700 um x 700 um	700 um x 700 um
Pixel number	240	96	150	150
otal collection area	23 mm ²	160 mm ²	70 mm ²	70 mm²
bsorption at 45 keV	-	92%	20%	17%
osorption at 100 keV	-	26%	-	-
ΔE (FWHM)	5 eV @ 6 keV	40 eV @ 130 keV and below;	20 eV @ 40 keV and below	8 eV @ 20 keV and below

60 eV @ 150 keV

✓ New cryostat, readout system
 ✓ Available in a few years (for µ-atoms)
 ✓ Multiple units can be installed

Unknown @ 40 keV

Outlook: K- atom with SDDs

- Kaonic hydrogen/deuterium 2p→1s in J-PARC E57
 - 1% / 0.1% yield with a gas target. (~4% LD)
 - SDDs inside target gas
 - detect L X rays in coincidence
 - re-start in 2023?

- Kaonic Helium $2p \rightarrow 1s$
 - Small 2p width measured in E62 suggests it is feasible.
 > 0.1% yield relative to 3d→2p, absolute yield ~0.05%?
 - X-ray coincidence with a large solid acceptance
 - at DAΦNE? or with liquid target at J-PARC?
 - need some detector development for ~ 30 keV

Summary

- Kaonic helium 3d→2p X-rays in J-PARC E62
 - Physics data taking was completed in 2018
 - Preliminary results
 - ~ 6 eV FWHM resolution with a cryogenic detector $\ensuremath{\text{TES}}$
 - Large shift and width were excluded
 - $|\Delta E_{2p}| < 1 \text{ eV}, \Gamma_{2p} < 5 \text{ eV}$
 - Attractive shift

 \rightarrow non-existence of p-wave nuclear state?

- Final numbers & publication will come soon
- Outlook
 - TES for higher energy will be available in a few years
 - K-p/K-d (J-PARC E57/SIDDHARTA2), K-He $2p \rightarrow 1s$ with SDDs