

Absorption spectroscopy of neighbouring Z plasmas in the X and XUV ranges at LULI 2000

G. Loisel, F. Thais (PI), T. Blenski, M. Poirier, S. Turck-Chièze, J-E Ducret*, D. Gilles CEA/DSM - *CELIA - University of Bordeaux, France

> S. Bastiani-Ceccotti (co-PI) and on-site operating teams École Polytechnique / LULI, France

P. Arnault, T. Caillaud, J. Fariaut, F. Gilleron, J.-C. Pain, C. Reverdin, V. Silvert, B. Villette CEA/DIF, France

> W. Fölsner Max-Planck-Institut für Quantenoptik, Germany

Contributors

F. Delahaye, C. Zeippen OBSPM, France C. Blancard, G. Faussurier, P. Cossé CEA/DIF, France J. Guzik, N. Magee, D. Kilcrease LANL, USA J. Harris AWE, UK M. Busquet LPGP, France

4th EMMI workshop on Plasma Physics - May 2-4, 2011, Darmstadt

Objectives

Provide knowledge of physical fundamental microscopic data necessary for the study of stellar interiors and the simulation of ICF

- Produce plasmas in LTE conditions at relatively high temperature (15-40 eV) for densities of a few 10 mg/cm³
- Measure LTE plasmas spectral opacities in soft X-ray (700-1600 eV) and XUV (50-200 eV) domains
- Use of particular elements resonant absorption transitions in L and M shells
- Study atomic physical effects of multicharged ions in a plasma by varying the atomic number of the pure element plasma
- Confront experimental results with different theoretical approaches (detailed or statistical)

Opacity measurement principle using laser and cavity «tools»

(1) Sample heating \rightarrow laser beam 100-200 J - 0.5 ns - foc \sim 400 μ m

(2) Radiography \rightarrow laser beam 1-30 J - 10-30 ps - foc ~20 μ m - delay ~0.5-3.5 ns

X-ray opacity measurements

X-ray opacity measurements Element selection

X-ray opacity measurements Theoretical predictions

➡ Absorbing transitions 2p-3d of ions showing a spin-orbit-splitting strongly dependent on the atomic number and plasma conditions

➡ Test of the competition between spin-orbit-splitting and statistical broadening

X-ray opacity measurements Experimental setup

«Milka» experimental room

X-ray opacity measurements Targets

Diagnostic hole (Φ 500 μm) Laser entrance hole (Φ 700 μm)

Sample thickness ~0.1 µm

X-ray opacity measurements Diagnostics

Concentrating

spherical mirrors

(grazing angle 1.5°, cut hv>2keV)

X-ray spectrometer

- independent line of sights
- large spectral range 8 18 Å
- resolving power $<\lambda/\delta\lambda>\sim400$

 Detector : Imaging plates

Reverdin, Thais, Loisel & Bougeard, RSI, 2010

«micro-DMX» spectrometer

- absolute heating flux measurements
- time resolved

TIAP cylindrical crystal

I2 channels → broadband measurement

Pinhole cameras

➡ image of emitting regions >1keV

X-ray opacity measurements Spectra extraction

∝ transverse integral

X-ray opacity measurements Spectra extraction

Spectral intensity ∝ transverse integral

X-ray opacity measurements Spectra extraction

Spectral intensity \propto transverse integral

X-ray opacity measurements Simulation of plasma parameters

ID Radiation hydrodynamics computations FCI-1*. Input : micro-DMX estimates Spatial profiles for the Iron opacity measurements (20 μ g/cm²)

X-ray opacity measurements Analysis : statistical computations SCO*

Iron

Nickel

Blenski ... Loisel... et al., to be published

X-ray opacity measurements Analysis : detailled computations HULLAC*

Iron

Nickel

Effect of the opening of the spectactor sub-shell 3p on the main structure 2p-3d

Important for Iron and diminishes with increasing Z

Poirier et al., to be published

X-ray opacity measurements 2009 - BaF₂, Sm, Gd & Ho

 \Rightarrow 3d-4f transitions evolutions with respect to the atomic number (Z~60)

XUV opacity measurements Double hohlraum setup

β-Cephei opacities

Comparisons of opacity profiles using OP and OPAL data along a $10 M_\odot\,\beta\text{-Cephei}$ temperature profile

Radiative levitation

differences between OP and OPAL in radiative acceleration for conditions encountered in β -Cephei atmosphere (up to 50% in the case of Fe at max. opacity)

 \rightarrow Strong sensibility with temperature

Relative differences per elements (OP-OPAL)/OPAL, From Delahaye et al. 2005

XUV opacity measurements Plasma conditions

Ionization conditions of Iron similar between the « β -Cep» case :

15.3 eV - 200 000 K - 3.5x10⁻⁶ g/cm³

and experiment

27.3 eV - 400 000 K - 3.4x10⁻³ g/cm³

<Z>~8.5

XUV opacity measurements Theoretical predictions

Nickel transmission - 15 μ g/cm² -Te=15.3, 27.3 et 38.5 eV

XUV opacity measurements Heating using a double cavity

micro-DMX

XUV opacity measurements Heating using a double cavity

Laser split

Unfiltered pinhole camera gives:I) X-ray energy ratios between «sub-beams»2) their entry in cavities

Ratio of X-ray energy between cavities (I:right, 2:left)

→conversion rate E_X/E_L in the present laser regime (25-250 J, 600 ps, Φ 400 µm) on Cu & Au are nearly constant

$$\frac{E_X^1}{E_X^2}\Big|_{\mathrm{Au}} \simeq \frac{E_L^1}{E_L^2} \simeq \left.\frac{E_X^1}{E_X^2}\right|_{\mathrm{Cu}} \simeq 3$$

XUV opacity measurements Heating using a double cavity

Radiation hydrodynamics calculations

Tests for $R=1,2,3,\infty$

* Ramis, Schmalz, Meyer-ter-Vehn, Comp. Phys. Comm., 1988 Busquet et al , Bull.Amer. Phys. 2008

XUV opacity measurements

Nickel transmission - plasma parameters estimates

	shot 42	$\langle \rho \rangle$	$\Delta \rho / \langle \rho \rangle$	$\langle T \rangle$	$\Delta T / \langle T \rangle$
delay 3.2 ns		$ m mg/cm^3$		eV	
	R = 1	1.8 ± 0.2	17~%	14.1 ± 0.2	3~%
	R = 2	2.1 ± 0.5	43 %	12.8 ± 1.2	18 %
delay I.8 ns	R = 3	2.3 ± 0.6	52~%	12.1 ± 1.7	28~%
	$R\infty$	5.0 ± 6.0	240%	11.2 ± 3.3	59~%
	shot 49				
	R = 1	1.8 ± 0.1	11~%	28.6 ± 0.1	1 %
	R = 2	1.7 ± 0.1	12 %	26.5 ± 1.2	9 %
	R = 3	1.8 ± 0.1	11 %	25.7 ± 1.8	14 %
	$R\infty$	2.3 ± 0.6	52~%	23.7 ± 3.3	28~%

Temperature gradients are reduced by a factor 2 from R∞ (one cavity only) to R=3

XUV spectrometer

- Toroidal mirror : concentrate light and focus on the tangential slit for spectral resolution and on the streak camera slit for spatial focus
- Reflective diffractive grating
- Use of a streak camera to discriminate in time the different emissions
- → Spectral range 80-180 Å for ~3 Å resolution

Conclusions and perspectives (1)

- X-ray absorption of Fe, Ni & Cu and of BaF₂, Gd & Sm plasmas
- \rightarrow observed thermal and statistical effects on the spin orbit structure
- → check of theoretical models
- XUV absorption of Cr, Fe, Cu & Ni plasmas
- \rightarrow validation of the experimental setup
- → spectra analysis in progress
- General improvements
- \rightarrow on the short radiography source
- \rightarrow on the heating scheme using a double cavity

Conclusions and perspectives (2)

For the future...

X-ray opacity

- use the double cavity heating to limit gradients
- perform 2D simulations of the sample evolution
- analysis of spectral data for BaF₂, Sm & Gd

XUV opacity

- measurements of the energy in each sub-beam for each shot
- broadening of the XUV spectral band
- complete simulation of the experiment

Use of both spectral domains to better constrain plasma parameters

Thank you!

Supplements

Radiography in ps regime

Intensity (a.u.)

EQUINOX facility

- Plane targets
- Laser energy 180 mJ x 10 shots
- Pulses durations 80 fs, 1 ps, 10 ps

Gold presents best conversion rate and most regular spectrum

β-Cephei opacities

Sun opacities

Elemental contribution along the solar radius

Proportion Fe, O, Ne, Mg ~ 10^{-4} with respect to H

Turck-Chièze et al., 1993