Laser-driven relativistic electron layers for coherent Thomson scattering

J. Meyer-ter-Vehn, Hui-Chun Wu, Xueqing Yan, MPQ Garching

A. Einstein, Annalen der Physik 17, 891 (1905)

Challenge: Ultrathin foils - high contrast laser pulses

Charge separation

lon acceleration regime $(s \sim d)$

For laser fields

$$a_0 \approx \varepsilon_0 = (n_e / n_{crit}) k_L d$$

the electrostatic field just balances the light pressure and the whole foil is accelerated.

This requires ultra-thin foils in the order of 10 - 100 nm thick.

Also circular polarized light is needed to keep electrons cold!

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses

A. Henig,^{1,2,*} S. Steinke,³ M. Schnürer,³ T. Sokollik,³ R. Hörlein,^{1,2} D. Kiefer,^{1,2} D. Jung,^{1,2} J. Schreiber,^{1,2,4} B. M. Hegelich,^{2,5} X. Q. Yan,^{1,6,†} J. Meyer-ter-Vehn,¹ T. Tajima,^{2,7} P. V. Nickles,³ W. Sandner,³ and D. Habs^{1,2}

Collection and focusing of laser accelerated ion beams for therapy applications

Ingo Hofmann*

Helmholtz-Institut Jena, Helmholtzweg 4, 07743 Jena, Germany

Jürgen Meyer-ter-Vehn and Xueqing Yan[†] Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

Anna Orzhekhovskaya and Stepan Yaramyshev Gesellschaft für Schwerionenforschung (GSI), Planckstraße 1, 64291 Darmstadt, Germany

620 J, 62 fs, 10 PW laser pulse 400 nm foil

Electron blow-out regime ($a_0 > \varepsilon_0$)

J. Meyer-ter-Vehn and Huichun Wu, Eur. Phys. J. D55, 455 (2009)

 $\gamma_{\rm max} \approx 19$

Electron density and γ evolution

electron layer after1 cycle of interaction, wave front depleted due to electron acceleration.

 γ evolution of electrons at front peak

Expected backscattered probe light upshift $4\gamma_{\text{max}}^2 \approx 4 \times 19^2 \approx 1444$

Great disappointment! Spectral cutoff at 36 ω_0 , not at 1444 ω_0 !

For coherent Thomson scattering, transverse momentum p_{\perp} degrades Doppler factor

Uniform Laser-Driven Relativistic Electron Layer for Coherent Thomson Scattering

H.-C. Wu (武慧春),^{1,*} J. Meyer-ter-Vehn,² J. Fernández,¹ and B. M. Hegelich^{1,3}

New idea how to suppress transverse electron momentum p_{\perp} : Use additional reflector reflecting pump light, but let relativistic electrons (REM) pass unperturbed!

Reflector (about 20 nm thick ~ skin depth)

Reflected light turns $p_{\perp} \rightarrow 0$, while changing p_x only marginally!

Relativistic electrons emerge from reflector with $p_{\perp} = 0$.

Simple argument to understand

Conservation of canonical momentum

$$p_{\perp} - a = \text{const}$$

 $p_{\perp} \rightarrow 0$

2D-PIC simulations H.C. Wu (2010)

$$a_0 = 3.5, n_e / n_{crit} = 1, d / \lambda = 0.001$$

without reflector

with reflector

Signal and spectrum from electron mirror

with reflector

Case for experiments now

 $\gamma \gamma \gamma_x$

Last picture of movie in previous viewgraph

Reflectivity of relativistic mirror

H.C. Wu, J. Meyer-ter-Vehn, et al. PRL104, 234801 (2010)

Electron density:

$$n_e(x) = n_0 S(x/d)$$

Coherently backscattered amplitude:

$$a_{\rm refl} / a_{\rm inc} = \gamma \frac{n_0 k_{\rm L} d}{n_{\rm crit}} F(\xi)$$

Form factor:

$$F(\xi) = \int_{-\infty}^{\infty} S(\chi) \, \cos(\chi \xi) \, d\chi$$

in rest frame of mirror $\chi = x'/d'$ $\xi = 2k'_Ld'$

in lab frame

$$\xi = 2\gamma^2 (1 + \beta) k_L d \approx 2\pi d / \lambda_{\text{refl}}$$

for Gaussian profile :

$$S(\chi) = \exp(-\pi\chi^2)$$

$$F(\xi) = \exp\left(-\frac{\xi^2}{4\pi}\right) = \exp\left(-\left(\frac{d}{2\lambda_{\text{refl}}}\right)^2\right)$$

Reflected amplitude decays exponentially for
$$\lambda_{
m refl} < d$$

Non-linear coherent Thomson scattering

H.C. Wu, J. Meyer-ter-Vehn, et al. PRSTAB (submitted 2011)

Doppler factor :

$$D = 4\gamma_x^2 / (1 + a_{probe}^2)$$

Reflected amplitude :

$$\frac{\mathrm{E}_{\mathrm{refl}}}{\mathrm{E}_{\mathrm{inc}}} = \frac{\gamma n_0 k_L d}{n_{crit}} \cdot \frac{\mathrm{F}(2 \pi d / \lambda_{\mathrm{refl}})}{(1 + a_{probe}^2)}$$

Ultimate goal: medical application

- medical applications require photons above 20 keV
- phase-contrast imaging :

phase shifts much stronger than absorption,

breast cancer tissue, photographs by ESRF

X-ray absorption

same with phase-contrast

Conclusions

Relativistic electron mirrors can be used to compress probe pulses and to upshift frequency by factors $4\gamma^2$.

Coherent backscattering requires dense electon sheets. They can be produced by blowing out all electrons from ultrathin foils with a strong drive laser pulse.

Transverse electron momentum degrading the Doppler-shift factor can be removed by reflecting the drive laser pulse by a reflector foil That lets the relativistic electron layer pass almost unperturbed.