

Modification of laser driven ion beams by using the double-pulse drive technique

Ceri. M. Brenner, PhD student

University of Strathclyde Central Laser Facility, RAL

4th EMMI workshop on plasma physics May 2011, Darmstadt

lon acceleration driven by a double-pulse drive configuration

How is it useful?

What is it?

How does it work?

Experimental results

Laser-plasma accelerators

Applications

 $E_p > \sim 100 \text{ MeV}$

Ion beam cancer therapy

Proton probing (field measurements)

Radiography

(density measurements)

Injection into conventional accelerators

Production of isotopes

Fast ignition fusion

Proton heating

Industrial

(lithography)

 $E_p \sim 10 \text{ MeV}$

Applications

 $E_p > \sim 100 \text{ MeV}$

Ion beam cancer therapy

Proton probing (field measurements)

Radiography (density measurements)

Injection into conventional accelerators

Production of isotopes

Fast ignition fusion

Proton heating

Industrial

(lithography)

High flux of medium energy (3-15 MeV) protons

10 MeV

University of

Glasgow

Strathclyde

Science & Technology Facilities Council

Multi-Pulse Sheath Acceleration (MPSA)

"Spectral control in proton acceleration with multiple laser pulses", A.P.L.Robinson *et al*, Plasma Phys. Control. Fusion 49 (2007) 373-384

double drive pulse

University of

Glasgow

Strathclyde

Multi-Pulse Sheath Acceleration (MPSA)

- controlled initial pulse initiates TNSA of ions and protons
- density modulation of protons builds up ahead carbon front
- increase in T_e caused by 2^{nd} (main) drive pulse
- surge of higher energy protons across ion front
- high accelerating fields at ion/proton boundary

University of

Glasgow

Strathclyde

"Spectral enhancement in the double pulse regime of laser proton acceleration", K.Markey *et al*, PRL, 105, 195008, (2010)

100 µm Au foils, Vulcan Petawatt, high contrast (with plasma mirror)

 $t = t_0 - 250 fs$

10^{24)}

 $t = t_0 - 150 fs$

 $t = t_0 - 50 fs$

 $t = t_0 + 50 fs$

10²⁴)

1D PIC simulations

 $t = t_0 + 150 fs$

lons

 $t = t_0 + 250 fs$

centra/aser facility

1D PIC simulations

 $t = t_0 + 350 fs$

Protons

lons

angle (degrees)

Recirculation and multi pulses?

Recirculation and multi pulses?

Recirculation of electrons

Science & Technology Facilities Council

University of

Glasgow

Strathclyde

Development of MPSA technique

Science & Technology

Spectral enhancement using the double pulse technique demonstrating:

 significant flux enhancement in the thin foil (refluxing) regime for lower energy protons

 increase in laser-to-proton conversion efficiency compared to thicker foils

Development of MPSA technique

Spectral enhancement using the double pulse technique demonstrating:

- significant proton flux enhancement in the thin foil (refluxing) regime for lower energy protons
- increase in laser-to-proton conversion efficiency compared to thicker foils

Future direction:

• investigate the double pulse technique for ultrashort laser system parameters

 conduct 2D PIC simulations to study the evolution of the sheath field on the rear surface

Strathclyde: C.M. Brenner, R.J. Gray, G. Scott, P. Mckenna

CLF, RAL: R.H.H. Scott, K. Markey, K.L. Lancaster, D. Neely, P.A. Norreys, I.O. Musgrave, A.P.L. Robinson, J.S. Green, M. Notley, Vulcan laser staff and CLF target fabrication teams

GSI, Darmstadt: O. Deppert, M. Roth

IPPLM, Poland: M. Rosinski, J. Badziak, J. Wolowski

LULI: H.P. Schlenvoigt, S.D. Baton

York: J. Pasley

CELIA: C. Beaucourt, J.J. Santos

LIBRA

IST Lisbon: K. Li, J.R. Davies

TEI, Crete: S.M. Hassan, E. Clarke, M. Tatarakis **DFO, Milan:** D. Batani

