

Radiation Pressure Dominated Acceleration of Ions

and Electrons

Dr. Sven Steinke Max Born Institute, Berlin

steinke@mbi-berlin.de

Collaborations

S. Steinke¹, M. Schnürer¹, T. Sokollik¹, P.V. Nickles¹,

A.A. Andreev^{1,6} and W. Sandner¹

A. Henig^{2,3}, R. Hörlein², D. Kiefer^{2,3} T. Tajima^{3,4}, X. Q. Yan^{2,5}, J. Schreiber^{2,7}, D. Jung^{3,8}, M. Hegelich⁸, J. Meyer-ter-Vehn² and D. Habs^{2,3}

¹Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy
 ²Max-Planck-Institut f. Quantenoptik, Garching
 ³Fakultät f. Physik, LMU München
 ⁴Photomedical Research Center, JAEA, Kyoto, Japan
 ⁵State Key Lab of Nuclear physics and technology, Peking University
 ⁶Institute for Laser Physics, St. Petersburg
 ⁷Imperial College, London
 ⁸Los Alamos National Lab

04.05.2011

4th EMMI Meeting, Darmstadt

Target Normal Sheath Acceleration (TNSA)

- Induced surface charge \rightarrow Electric field
- most electrons are forced to turn around @ λ_{D}
- only electrons with $\epsilon > \epsilon_\infty$ can leave the potential

$$\varepsilon_{\infty} = Q e^{2} / (2\pi \varepsilon_{0} B)$$

• hot electrons outside the target

 $Q \sim 2 \lambda_{_D} N_{_e} / L$

 $E_{sheath} \sim TV/m - ionizes$ and accelerates the ions

dependence on target thickness only due to divergence of electrons

S.C. Wilks et al., PRL. **69**, 1383 (1992). P. Mora, PRL **90**, 185002 (2003). J. Fuchs et al., Nat. Phys. **2**, 48 (2006).

Transparency Regime

Multiparametric 2D-PIC Simulation

Empirical law for optimum areal density: $(\sigma = n_e D)$

$$\sigma_{opt} / n_c \lambda \approx 3 + 0.4 (I / I_0)^{1/2}$$

$$I_0 = 1.368 \times 10^{18} \times (\mu m / \lambda)^2$$

$\sigma < \sigma_{opt}$:

• the plasma becomes increasingly transparent, electrons are detached from the ions (\rightarrow electron break out)

$\sigma > \sigma_{opt}$

• <u>no</u> maximum displacement of all electrons within the focal volume

scaling:
$$E_{\text{max}} \sim \sqrt{I} \sim a_0$$
,

$$=\frac{eE_0}{m_e\omega c}$$

 a_{i}

some numbers: $I = 5 \times 10^{19} W / cm^{2}$ $n_{e} / n_{c} = 500, \lambda = 810 nm$ $\Rightarrow D_{opt} \approx 8nm \le \delta_{\lambda}$

Coherent Acceleration of Ions by Laser (CAIL)

• target becomes transparent if $D \le 8$ nm

 \rightarrow transmitted laser preserves electron forward momentum \rightarrow coherent motion

• forward current density $J(\varepsilon)$ changes from exponential to power law dependence:

$$J(\varepsilon) = -J_0 (1 - \varepsilon / \varepsilon_0)^{\alpha} - coherenceparameter$$

 $\alpha_{max} = 3$ for: $\sigma_{opt} / n_c \lambda \approx a_0$

Prevention of adiabatic acceleration:

- electron "reflexing" or "blow-out"
- high thermal component of electron energy (\rightarrow collisionless adsorption)
- \rightarrow lon energy enhancement:

$$E = (2\alpha + 1)E_0$$

How to access this Regime?

04.05.2011

Requirements

Results (linear polarization)

4th EMMI Meeting, Darmstadt

Radiation Pressure Acceleration (RPA)

Aim: Gradual acceleration

 \rightarrow Reduce absorption

<u>Method:</u> Circular Polarization: Lorentz force: $\mathbf{F}_{L} = \mathbf{e}(\mathbf{E}_{L} + \mathbf{v}_{p} \times \mathbf{B}_{L})$

 \rightarrow Suppression of 2 ω -electron heating

- electrons pile up
- \rightarrow electron depletion layer left behind
- E_x balances F_P at any time, i.e. $P_{rad} = 2I / c \approx P_{es} = (en_0 d)^2 / 2$ $\Rightarrow \sigma_{opt} / n_c \lambda \approx a_0$
- all ions in $(d < x < d + I_s)$ reach $(d + I_s)$ at the same time by cyclic RPA

Klimo et al., PRST 11, 14 (2008)

Peak in C⁶⁺ Spectrum

4th EMMI Meeting, Darmstadt

04.05.2011

2D-PIC Simulation

Circular Polarization:

- ballistic acceleration of the whole target volume
- target movement results in E-field oscillations perpendicular to (moved) target surface
- \rightarrow Electron heating
- \rightarrow Peak dissolves in time

Conclusion

Departure from thermal TNSA towards collective, gradual acceleration

Prerequisites:

- ultra-high contrast laser pulses (Double-Plasma-Mirror)

MAXIMILIANS

MU

- ultra-thin target foils (Diamond-Like-Carbon)

Laser Transparency Regime

Coherent Acceleration of lons by Laser

Ion Energy Enhancement:
2 times (13MeV) for protons and 20 times for carbon ions (70 MeV)

- Very high conversion efficiency: 10% for carbon ions and 1.6% for protons

Radiation Pressure Acceleration

- narrowed carbon energy spectra: centered around 30 MeV

- Promising scaling: maximum ion energy proportional to laser intensity