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Motivation

Magnetohydrodynamic (MHD) instabilities play a key role in astrophysics
and high energy density physics. Thus, at the Technische Universitdt Darm-
stadt, new projects are being under preparation that consider the dynamics
of MHD instabilities.

Usually, wave growth rates are studied using kinetic theory, as also wave exci-
tation by inverse Landau damping is possible. Here, based on former works
by K.-H. Spatschek (Theoretische Plasmaphysik, Teubner Studienbiicher,
1991) and P.A. Sturrock (Plasma Physics, Cambridge University Press,
1994), a simple MHD method is presented which should help to roughly
evaluate parameter regions of MHD instabilities.

Energy principle

The momentum balance of the linearized MHD system of equations is ex-
pressed by the Lagrange velocity E using the relation between the Euler
velocity @(7,t) and the Lagrange velocity of a fluid element which was sit-
uated at 7, at time t,
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Then, the linearized equation may be represented by
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Further it is assumed that the separation of variables by
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is possible, so that the function 74 (t) may be represented by a plain wave
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wy, are the solutions of the equation
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Because of the linearity of the problem the solution of eq. (2) may be rep-
resented by
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Thus, the MHD system is (exponentially) stable if - and only if - all eigen-
values of ﬁ/po are negative.
For the potential energy density W, F= —VWEg, it follows
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In case of negative potential energy, the system is unstable, or, with other
words, for the stability of the hydrodynamic system it is necessary and suf-
ficient that the potential energy has no negative values.

Taking the hydrodynamic stability condition for ideal plasmas into account
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Spatschek and Sturrock found, that eq. (7) may be used for the determi-
nation of instabilities in plasmas, surrounded by a vacuum and placed in
a fixed conducting surface, provided that additional vacuum and surface
contributions of the potential energy are taken into account. For adiabatic
systems follows:

volume contribution to potential energy:
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surface and vacuum contributions to potential energy:
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contributions to potential energy by variation of vacuum magnetic field:
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Application to an internally homogeneous
linear pinch

e In a homogeneous plasma, an axial magnetic field B,7i, exists.

e On a metallic cylinder surrounding the plasma, axial electric currents
flow.

e These currents generate an external azimuthal magnetic field B,7i,.
e Between plasma and metallic cylinder, a vacuum exists.

e In the metallic cylinder, V x BZ =0 and Vp, =0.

Thus, one has to determine, amongst others, the minimum of the potential
energy
1
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It is found by the variational method using the Euler equation (Spatschek)
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which gives for the minimum potential energy of the plasma in the cylinder
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To calculate the integral of eq. (14), £ has to be determined from eq. (2).
Assuming that & is periodic in z and ¢, one finds from (2) (B. = const)
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In case of 9/0¢p = 0 (i.e. m = 0), from eqs. (16, 17) the expression
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follows, which was already derived by Sturrock studying the sausage insta-
bility. Thus
const
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where I, is the modified Bessel function of first kind of order zero.

Tasks for future work

e Numerical solution of the system of equations (15-18) for m # 0.
e Further development of the energy principle for anisotropic systems.
e Application of the energy principle to planetary transition layers.

e Determination of growth rates of Kelvin-Helmholtz and Rayleigh-
Taylor instabilities in astrophysical plasmas and high energy density
systems.
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