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Motivation

Magnetohydrodynamic (MHD) instabilities play a key role in astrophysics
and high energy density physics. Thus, at the Technische Universität Darm-
stadt, new projects are being under preparation that consider the dynamics
of MHD instabilities.
Usually, wave growth rates are studied using kinetic theory, as also wave exci-
tation by inverse Landau damping is possible. Here, based on former works
by K.-H. Spatschek (Theoretische Plasmaphysik, Teubner Studienbücher,
1991) and P.A. Sturrock (Plasma Physics, Cambridge University Press,
1994), a simple MHD method is presented which should help to roughly
evaluate parameter regions of MHD instabilities.

Energy principle

The momentum balance of the linearized MHD system of equations is ex-
pressed by the Lagrange velocity ~ξ using the relation between the Euler
velocity ~u(~r, t) and the Lagrange velocity of a fluid element which was sit-
uated at ~ro at time to

∂~ξ(~ro, t)

∂t
= ~u(~r, t) ≈ ~u(~ro, t) + ~ξ∇~u + ... ≈ ~u(~ro, t) (1)

Then, the linearized equation may be represented by

ρo
∂2~ξ

∂t2
= ~F (~ξ). (2)

Further it is assumed that the separation of variables by

~ξ(~ro, t) = ~ξk(~ro)τk(t) (3)

is possible, so that the function τk(t) may be represented by a plain wave

τk ∼ exp[i(ωkt + ϕk)]. (4)

ωk are the solutions of the equation

−ρoω2

k
~ξk = ~F (~ξk). (5)

Because of the linearity of the problem the solution of eq. (2) may be rep-
resented by

~ξ(~ro, t) =
X

k

ak
~ξk(~ro)exp[i(ωkt + ϕk)]. (6)

Thus, the MHD system is (exponentially) stable if - and only if - all eigen-

values of ~F/ρo are negative.

For the potential energy density WF , ~F = −∇WF , it follows

WF = −

Z ~ξ

0

~F (~η) d~η = −
~ξ

2
~F (7)

In case of negative potential energy, the system is unstable, or, with other
words, for the stability of the hydrodynamic system it is necessary and suf-
ficient that the potential energy has no negative values.
Taking the hydrodynamic stability condition for ideal plasmas into account

∇ po =
1

4π
(∇× ~Bo) × ~Bo, (8)

Spatschek and Sturrock found, that eq. (7) may be used for the determi-
nation of instabilities in plasmas, surrounded by a vacuum and placed in
a fixed conducting surface, provided that additional vacuum and surface
contributions of the potential energy are taken into account. For adiabatic
systems follows:
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(9)

surface and vacuum contributions to potential energy:
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~BV · δ ~BV ξ · d~S,

(10)
contributions to potential energy by variation of vacuum magnetic field:

WV =
1

8π

Z

VV

(δ ~BV )2 d~r. (11)

~Q = ∇× (~ξ × ~Bo). (12)

Application to an internally homogeneous
linear pinch

• In a homogeneous plasma, an axial magnetic field Bz~nz exists.

• On a metallic cylinder surrounding the plasma, axial electric currents
flow.

• These currents generate an external azimuthal magnetic field Bϕ~nϕ.

• Between plasma and metallic cylinder, a vacuum exists.

• In the metallic cylinder, ∇× ~Bz = 0 and ∇po = 0.

Thus, one has to determine, amongst others, the minimum of the potential
energy

WF =
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~Q2 + 4πγpo(∇× ξ)2
i

d~r. (13)

It is found by the variational method using the Euler equation (Spatschek)

1

4π
(∇× ~Q) × ~Bz + γpo∇(∇~ξ), (14)

which gives for the minimum potential energy of the plasma in the cylinder

Min WF =
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(~ξ · d~F ). (15)

To calculate the integral of eq. (14), ξ has to be determined from eq. (2).

Assuming that ξ is periodic in z and ϕ, one finds from (2) ( ~Bz = const)
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∇ξ, (16)
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In case of ∂/∂ϕ = 0 (i.e. m = 0), from eqs. (16, 17) the expression
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follows, which was already derived by Sturrock studying the sausage insta-
bility. Thus

ξz(r) =
const

α2
Io(αr), (20)

where Io is the modified Bessel function of first kind of order zero.

Tasks for future work

• Numerical solution of the system of equations (15-18) for m 6= 0.

• Further development of the energy principle for anisotropic systems.

• Application of the energy principle to planetary transition layers.

• Determination of growth rates of Kelvin-Helmholtz and Rayleigh-
Taylor instabilities in astrophysical plasmas and high energy density
systems.

EMMI Workshop on Plasma Physics with Intense Heavy-Ion and Laser Beams, 2011


