## Perspective targets for high energy density physics investigation

Vladimir Efremov

EMMI Workshop on Plasma Physics, May 2, 2011, Darmstadt





V.P. Efremov,
V.V.Milyavskiy,
A.V.Utkin,
S.Kolesnikov,
K.A.Ten,
E. R. Lukjanchikov,
L. A. Tolochko,
V.E. Fortov

### Outlook

1. Motivations

- 2. Investigation of shock compression of  $SiO_2$  aerogel using synchrotron irradiation
- 3. Investigation of shock compression of Fullerite  $C_{60}$ , Fullerite  $C_{70}$ , using synchrotron irradiation

# Research attractiveness of SIO<sub>2</sub> - targets for plasma physics studies

Efremov V.P.<sup>1</sup>, Solovyev A.M.<sup>2</sup> <sup>1</sup>JIHT RAS, <sup>2</sup>MIPT

this material will be represented in a poster presentation by Solovyev A. M.

Liquid silica is one of the major components of geophysically relevant melts (magmas).

Silica finds several industrial applications

Liquid SiO2 is a prototype of network-forming liquid.

Silica is an working media for developing powerful optical fiber lasers.

Silica aerogel is widely used for inertial fusion targets.

For description of all this processes information for wide P - T area of phase diagram is needed.







stishovite (tetragonal crystal)

α-quartz (trigonal crystal)

### Application of SiO<sub>2</sub> for high energy physics.

### **Glass Microspheres**





#### Fiber Fuse Effect

### Silica Aerogel





#### Inertial Confinement Fusion









## Shock Hugoniot







\* R. F. Trunin, G. V. Simakov, M. A. Podurets, B. N. Moiseev, L. V. Popov, Dynamical compressibility of quartz and quartzite at high pressures, Izv. Akad. Nauk SSSR. Fiz Zemli 1, 13-20 (1971) [in Russian] (Bull. Akad. Nauk SSSR, Physics of the S

R. F. Trunin, G. V. Simakov, M. A. Podurets, Compression of porous quartz by strong shock waves, Izv. Akad. Nauk SSSR. Fiz. Zemli 2, 33-39 (1971) [in Russian]

• R. F. Trunin, Shock compressibility of condensed matters in strong shock waves caused by underground nuclear explosions, Usp. Fiz. Nauk 164(11), 1215-1237 (1994) [in Russian]

• V. G. Vildanov, M. M. Gorshkov, V. M. Slobodenjukov, E. N. Rushkovan, Shock compression of low initial density quartz at pressures up to 100 GPa, - in: Shock Compression of Condensed Matter. Proc. Am. Phys. Society Topical Group. Seatle. Washi

• R. F. Trunin, L.F.Gudarenko, M. V. Zhernokletov, G. V. Simakov, Experimental data on shock compressibility and adiabatic expansion of condensed substances, RFNC, Sarov (2001) [in Russian]







### Shock Hugoniot of melted quartz with $\rho_o = 2.2$ g/ccm



LASL Shock Hugoniot Data / Ed.S.P.Marsh.- Berkeley: Univ. of California Press, 1980, 658p.

Glass K - 8





We found (unexplained by measurement errors) difference in the melting curve of stichovite in the temperature range 2900 K - 4400 K. [1,2,3]

We found a different curve slope of the phase transition coesite – stishovite. [1,2,5]

We found differences in the melting curve of quartz. (E.g. it reaches a value 2.8 in the range 1600 K - 2300 K). [1,4]

Also it should be noted that there are sparse data at high pressure area as opposed to the area T = 0 - 4000 K, P = 0 - 35 Gpa.

We plan to make revision of phase diagram data in a wide range and investigate unexplored area by experimental ad theoretical methods.

[1] J. Z. Zhang, R. C. Liebermann, T. Gasparik, C. T. Herzberg, and Y. W. Fei, J. Geophys. Res., [Solid Earth], 98 [B11] 19785-19793 (1993).

[2] A. B. Belonoshko, Geochim. Cosmochim. Acta, 58 [6] 1557-1566 (1994).

- [3] A. B. Belonoshko, L. S. Dubrovinskii, N. A. Dubrovinskaya, and S. K. Saksena, Petrologiya, 4 [6] 563-580 (1996).
- [4] E. Bourova and P. Richet, Geophys. Res. Lett., 25 [13] 2333-2336 (1998).
- [5] L. S. Dubrovinskii, G. O. Piloyan, and I. D. Ryabchikov, Dokl. Akad. Nauk SSSR, 301 [3] 682-685 (1988).



## Investigation of shock compression of SiO2 – aerogel using synchrotron emission

V.P. Efremov, K.A.Ten, E. R. Lukjanchikov, L. A. Tolochko Our purpose is investigation of shock wave front structure in porous media

### What is it silicon dioxide aerogel?





### Why aerogel?

1. This is convenient material for porous media model construction

2. This is nanostructure material

**3. Good transparency for synchrotron** emission

4. Aerogel targets are available in wide interval of densities from 0.01 to 1.0g/cm3.





### **Experimental scheme**



1 – Flat wave generator; 2 - Ring; 3 – Impactor; 4 – Detonator; 5 - detector SI DIMEX; 6 – HE TNT\HMX 50/50; 7 – Investigated target a) – Direct measurement; 6) – little angle scattering

### **Experimental design**



1 – Flat wave generator; 2 –explosive; 4 –Impactor; 5 – aerogel, 6 – Steel; 7 – Carcass – PMMA



#### **Measurement of synchrotron radiation passed target**

### **Experimental X-t diagram**



## **Fullerites in shock waves**

## V.V.Milyavskiy, JIHT RAS





### Carbynes





Graphene

Graphites



Carbon Nanotubes

Diamonds



## Fullerenes, Fullerites and Fullerene-based polymers



**Amorphous Carbon** 

## What is "FULLERENES" ?

2 pentagons; N-20)/2 nexagons

 $C_{22}, C_{24}, C_{26}, C_{28}, C_{30}, C_{32}, C_{34}, C_{36}, C_{38} \dots$ 

the rule of isolated pentagons

 $C_{60}, C_{70}, C_{72}, C_{74}, C_{76}, C_{78}, C_{80}, C_{82}, C_{84} \dots$ 

## **FCC-structure of C<sub>60</sub> fullerite**





The enthalpy of formation of C<sub>60</sub> is 3270 kJ/kg\*, C<sub>70</sub> - 3069 kJ/kg\*\*. This energy should be released during transformation of fullerites to graphite. It is comparable with the heat of explosion of ammonite - 4312 kJ/kg.

\*Kolesov V. P. et al. J. Chem. Thermod. 28 (1996) 1121.
\*Lebedev B. V. et al. Thermochimica Acta 299 (1997)127.
\*Zubov V.I. (private communication)
\*\*Herminio P. Diogo et al. J. Phys. Chem. Sol. 58 (1997)1965.



1D- and 2D- polymerized structures of C<sub>60</sub> fullerite V.V. Brazhkin, A.G. Lyapin: Usp. Fiz. Nauk 166 (1996) 893.



Rhombohedral



Orthorhombic

Crystal-geometrical conformity between starting  $C_{60}$  and polymerized  $C_{60}$  phases. B. Sundqvist: Advances in physics. 48 (1999) 1.

## **1D Orthorhombic polymer of C<sub>70</sub>**



Alexander V. Soldatov, *et al.* Topochemical Polymerization of  $C_{70}$  Controlled by Monomer Crystal Packing *Science* 293, 680 (2001). Comparative microstructural studying of samples recovered after shock wave loading of  $C_{60}$  and  $C_{70}$  fullerites





# Shock compressibility and sound velocities in shock-compressed C<sub>60</sub> fullerite



Joint Institute for High Temperatures of RAS, Moscow Institute for Problem of Chemical Physics of RAS, Chernogolovka RFNC All-Russia Research Institute of Experimental Physics, Sarov

## **Experimental assembly**



## **Experimental profiles**



### **Shock Compressibility of C<sub>60</sub> fullerite**



### Sound velocity in shocked C<sub>60</sub>



### "Two-wave" structure of the shock front



### Sound velocity in shocked C<sub>60</sub>



### **Shock compressibility of C<sub>70</sub> fullerite**



Joint Institute for High Temperatures of RAS, Moscow Institute of Nuclear Physics SB RAS, Novosibirsk Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk

### Pulsed-periodical SR source of Institute of Nuclear Physics SB RAS



## **Experimental setup**



Fullerite C<sub>70</sub>, 30% rombohedral + 70% hexagonal phase,  $\rho_0$ =1.663 g/cc  $\rho_{00}$ =1.651 g/cc

## **Starting experimental profile**



## **Experimental distance-time diagram**





Glass microspheres are stable with respect to a pressure pulse up to ~ 0.25 GPa. Fullerene molecules are stable with respect to a pressure pulse up to ~ 20 GPa. Bulk modulus of isolated  $C_{60}$ molecules is ~ 843 GPa\*.

\*R.S. Ruoff, Nature 360, 663 (1991)].

Similar perspective properties:

- 1.Wide interval of densities is available
- 2. Two wave front fracture creation
- 3. Promising application for obtaining high energy density plasma
- Differences: Different types of porosities.

Payment for convinces in applications: Two complicated phase diagram

### Conclusions:

Developed approach is working for direct determination of material Hugoniot and investigation of shock wave front structure in porous media.

This approach may be displaced to PRIOR at FAIR

### Thank you for your attention...

EMMI Workshop on Plasma Physics, May 2, 2011, Darmstadt

