

Plasma Physics @ GSI

Thomas Stöhlker GSI-Darmstadt and Helmholtz Institute Jena

Facilities for Heavy Ions at GSI

storage ring ESR

APPA Collaborations

Atomic Physics

Materials Research and Biophysics

Unique Facilities and Advanced Instrumentation

Helmholtz Alliance: EMMI

Extremes of Density and Temperature: Cosmic Matter in the Laboratory

EMM

Interdisciplinary Aspects

Research Focus: Matter under Extreme Conditions

Highest Charge States Relativistic Energies High Intensities High Charge at Low Velocity Extreme Static Fields Extreme Dynamical Fields and Ultrashort Pulses Very High Energy Densities and Pressures Large Energy Deposition

shielding of cosmic radiation

Contributions to

... behaviour of compound materials

... response of cells to irradiation by heavy ions

Creation and Study of Warm Dense Matter (WDM) and of Matter at High Energy Density (HED)

Novel XUV photon sources of highest brilliance and the ions beams at GSI provide complementary tools to study warm dense matter

intense, energetic beams of heavy ion (GSI)

65 mm

Ne¹⁰⁺ 300 MeV/u; Kr crysta

large volume of sample (mm³)

long time scales (50 ns)

fairly uniform physical conditions

any target material

specific energy: ~ kJ/g

> temperature: up to 1 eV

> > pressure: multi-kbar range

photon pulses (XUV) of highest brilliance (FLASH)

HELMHOLTZ

GSÍ

small volume of sample (100 μm³) ultra-short time scales (100 fs) high gradients low-Z target material

Helmholtz Center Dresden/Rossendorf

In-House Research Atoms, Molecules, and Plasmas

Atomic Physics: The Physics of Strong Electromagnetic Fields

Plasma Physics: Creation and Study of Warm and Hot Dense Matter

High-Power Laser System in Jena

POLARIS – an all-diode pumped PW-class laser system

Applications

- x-ray source
- strong field physics
- particle acceleration

CPA Yb: glass laser system with 4 (5) amplifiers

wave length: pulse duration: pulse energy: peak power: focal spot area: rep. rate: peak. intensity:

1030 nm 130 fs 10 (100) J 100 TW (1 PW) 10 mm² 0.05 (0.01) Hz ~10²⁰ (>10²²) W/cm²

The Helmholtz Institute Jena

- acts as a competence centre for innovative high-power lasers and light sources
- serves as an interface for future advancements of conventional and laser based acceleration of electrons and ions
- develops and advance innovative ideas in measurement techniques and diagnosis applicable to investigating the interaction between light and matter
- experiments in the fields of the physics of extremely strong electromagnetic fields and of warm, dense matter
- foster basic and advanced education at the graduate and post-graduate level in the field of high-power laser and accelerator physics.

EXTREME STATES OF MATTER 93 % of all known matter in the universe is in plasma states !

- Emission of light
- Transport of light
- Transport of charged particles
- Transport of electrons
- Transport of energy
- Nuclear Processes?

High Intensity / High Energy Laser at GSI The PW Class Laser Facility PHELIX

laser heated plasma target

Z6: 0.3 – 1 kJ @ 1 – 15 ns

50 J @ 0.5 – 2 ps (100 TW)

2011: 150 J -- 2 w @ 1 – 15 ns

Laser bay: 0.5 PW, 250 J @ 500 fs

highly charged ions

2800 Shots of PHELIX delivered

G S IL-PHEI

Experimental Campaigns : Ion stopping @ Z6 GSI, TU Darmstadt, Sarov Proton acceleration TU Darmstadt, GSI, Rutherford, Strathclyde Kα – x-ray production Bordeaux, Moscow, GSI X-ray lasers Parie-Sud GSI Jona

Paris-Sud, GSI, Jena Relativistic electron transport Strathclyde, Rutherford, GSI, TU Darmstadt

> Laserlab Europe

Ion Interaction with Laser Generated Plasma Targets

ASSOCIATION

Experimental work by A. Frank et al. TUDa

We have implemented a 2ω option in order to reduce target instabilities

A. Blazevic

Laser heated homogeneous high density plasma for heavy

ion – plasma interaction experiments

Up to 40% of the laser energy is converted into soft (<0.5 keV) X-rays O.Rosmej et al.

Good agreement with theory, e.g. RALEF-2D !

Significant results were obtained in particle acceleration

 Targets developed by TU Darmstadt were shot at PHELIX yielding an increase in proton energy compared to flat foils

> ELMHOLTZ GEMEINSCHAF

HELMHOLTZ

651

DARMSTADT

 GSI has started a program to couple laseraccelerated ions into conventional structures

Parametric amplification in the XUV/soft x-ray spectral range has been demonstrated

HELMHOLTZ ASSOCIATION

ARTICLES PUBLISHED ONLINE: 18 APRIL 2010 | DOI: 10.1038/NPHYS163

Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases

J. Seres^{1,2}, E. Seres¹, D. Hochhaus^{3,4,5}, B. Ecker^{3,4}, D. Zimmer^{3,4,6}, V. Bagnoud³, T. Kuehl^{3,4} and C. Spielmann^{1,2}*

nature physics

¹Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany, ²Department of Physics I. University of Würzburg, Am Hubland, 97074 Würzburg, Germany, ³GSI Helmholtz Centre for Heavy Ion Research GmbH, Planckstrasse 1, 64291 Darmstadt, Germany, ⁴Department of Physics, Johannes-Gutenberg-University Mainz, Staudingerweg 7, 55128 Mainz, Germany, ⁵EMMI Extreme Matter Institute, Planckstrasse 1, 64291 Darmstadt, Germany, ⁶LASERIX-CLUPS, LPGP UMR 8578, Université Paris-Sud 11, Bat 210, 91405 Orsay, France. *e-mail: christian.spielmann@uni-jena.de.

- We discovered an amplification mechanism based on parametric amplification : X-ray Parametric Amplification (XPA)
- We experimentally observed amplification factors up to 8 x 10³ at 260 eV photon energy
- Our theoretical model describes for the first time the conditions for parametric amplification in the XUV and gives excellent agreement to experimental observations

Experimental signature of a parametric process (exponential gain) in the XUV

Lithium-like lons: Strong Field Physics

PRIOR – Proton Radiography at FAIR

At FAIR: a dedicated beam line from SIS-18 for radiography 4.5 GeV, 5•10¹² protons

GSI

Challenging requirements for HEDP experiments:

- up to ~20 g/cm²
- <10 µm spatial resolution</p>
- 10 ns temporal resolution (multi-frame)
- sub-percent density resolution

PRIOR Goals

4.5 GeV Proton Microscopy

Lens and detector design goals (in accordance with FAIR pRad specifications):

- less than 10 µm spatial resolution;
- · sub-percent density resolution;
- target areal density up to 5 50 g/cm², high-Z targets;
- temporal resolution <10 ns (for FAIR), <100 ns (for GSI);
- field of view: 20 mm;

Dynamic experiment design goals:

 Multiple drivers in combination with high resolution proton microscopy will provide a unique facility for the study of material properties at extreme temperatures and pressures.

Operated by Los Alamos National Security, LLC for NNSA

Dynamic Materials: What can we do today at LANSCE in dynamic materials?

Operated by Los Alamos National Security, LLC for NNSALA-UR-10-00072

Fielding at GSI – a minor reconstruction of the HHT cave

a compact system but long drift is needed for the microscope

D. Varentsov

Future Perspectives

Droplet target at GSI (Grisenti)

Accepted proposal at NIF (P. Neumayer)

X-Ray Laser at ESR/Nuclear Excitation

Experiments at FLASH

Interactions within EMMI

APPA Collaborations

Atomic Physics

Materials Research and Biophysics

Unique Facilities and Advanced Instrumentation

New route in HEDP/ WDM research

Equation-of-state of High Energy Density mattersociation

basic thermodynamic properties of matter in unexplored regions of the phase diagram (two-phase regions, critical points, non-ideal plasmas)

- Phase transitions and exotic states of matter metal-to-insulator or plasma phase transition, hydrogen metallization problem, etc.
- Transport and radiation properties of HED matter electrical and thermal conductivity, opacity, etc.

Stopping properties of non-ideal plasma

anomalous temperature and density dependence of heavy ion stopping and charge-exchange cross sections

Additional diagnostic tools are an option: high energy protons and high energy high power laser

The APPA Collaborations

Science with the Modularized Start Version

MHOLTZ

Development of Project Staging

2003	Recommendation by Wissenschaftsrat – FAIR Realisation in three stages							
2005	Entire Facility Baseline Technical Report							
2007	Phase A					Phase B SIS300		
2009	Module 0 SIS100	Module 1 experimental areas for CBM/HADES and APPA	Module 2 Super-FRS fixed target area NuSTAR	Module 3 pbar facility, incl. CR for PANDA, options for NuSTAR	Module 4 LEB for NuSTAR, NESR for NuSTAR and APPA, FLAIR for APPA	Module 5 RESR nominal intensity for PANDA & parallel operation with	Phase B SIS300	
	The M	lodularized	d Start Ve		NuSTAR and APPA			

Special Thanks

All colleagues of the Plasma Physics Division at GSI

&

The colleagues from TU-Darmstadt

Atomic and Plasma Physics, and Applied Sciences APPA@FAIR

From Basic Science to Applications

Thomas Stöhlker GSI-Darmstadt and Helmholtz Institute Jena

APPA Collaborations (PNI relevant FAIR collaborations)

Atomic Physics SPARC: 285 members from 26 countries FLAIR: 144 members from 15 countries

> HEDgeHOB: 175 members from 16 countries WDM: 71 members from 8 countries

Friday 81

Materials Research and Biophysics BIOMAT: 110 members from 12 countries

Unique Facilities and Advanced Instrumentation

The uniqueness of heavy ion beams compared to other techniques (Laser, Z-pinch)

intense, energetic beams of heavy ions

Ne¹⁰⁺ 300 MeV/u; Kr crystal

- large volume of sample (mm³)
- fairly uniform physical conditions
- thermodynamic equilibrium
- any material

Compared to GSI, FAIR will provide an intensity and energy density increase by a factor of 100.

WDM-parameters: **T**: up to 10 eV ρ : ~ solid **P**: up to 1 Mbar

Z-pinch N

Plasma Physics beam line at SIS-100

intensity at focal plane for LAPLAS

The GSI Accelerator Facility for Heavy Ions

storage ring ESR

WDM collaboration -

Atomic physics in dense environments

WDM produced by Intense Heavy Ion Beams and probed by Intense Laser Beams

Unique combination of intense heavy ion beam driven experiments + PHELIX driven diagnostics

High Power Laser PHELIX

High Intensity / High Energy Laser at GSI The PW Class Laser Facility PHELIX

laser heated plasma target

Laser bay: 0.5 PW, 250 J @ 500 fs 2008: 0.2 PW, 100 J @ 500 fs

Z6: 0.3 – 1 kJ @ 1 – 15 ns

50 J @ 0.5 – 2 ps (100 TW)

2008: 300 J @ ~ns

highly charged ions

High-Power Laser System in Jena

POLARIS – an all-diode pumped PW-class laser system

Applications

- x-ray source
- strong field physics
- particle acceleration

CPA Yb:glass laser system with 4 (5) amplifiers

wave length:
pulse duration:
pulse energy:
peak power:
focal spot area:
rep. rate:
peak. intensity:

130 fs 10 (100) J 100 TW (1 PW) 10 mm² 0.05 (0.01) Hz ~10²⁰ (>10²²) W/cm²

1030 nm

Helmholtz International Center

The first three years, the next three years and beyond

Helmholtz International Center

SIS, FAIR

+ Theory

Accelerator Development High Performance Computing

HED-experiments at SIS-100

Up to **200 times** the beam power and **100 times** higher energy density in the target will be available at FAIR

lon beam	SIS-18(U ⁷³⁺)	SIS-100 (U	²⁸⁺)
Energy/ion	400 MeV/u	up to 1GeV/u	
Number of ions	4.10 ⁹ ions	5.10 ¹¹ ions	x100
Full energy	0.06 kJ	6-15 kJ	
Beam duration	130 ns	50 ns	
Beam power	0.5 GW	0.1-0.3 TW	x 200-600

Research Program at GSI Directed Towards FAIR Example: Atomic Physics

Strong Field QED/Fundamental Constants

- Precision x-ray Spectroscopy on Cooled Heavy Ions: **1S Lamb Shift**
- Laser Spectroscopy of the Hyperfine Structure of High-Z ions Confined in Storage Rings and Traps
- Trapped Single H-like Ions: The Bound State g-Factor
- Towards Super-Critical Fields
- Towards Parity Violation in High-Z Ions

At the Borderline to Nuclear Physics

Atomic Structure and Nuclear Decay Modes

Novel Instrumentation and Installations for Atomic Physics

new internal target (micro-cluster target), new target chamber (impact parameter), micro-calorimeter detectors, diamond detectors, electron spectrometer, transverse electron target

HED-experiments at SIS-100

Up to 200 times the beam power and 100 times higher energy density in the target will be available at FAIR

Ion beam SIS-18(U⁷³⁺) SIS-100 (U²⁸⁺)

Energy/ion Number of ions Full energy Beam duration

Specific powergy WDM temperature

up to 1GeV/u 400 MeV/u 4.10⁹ ions 5.10¹¹ ions x100 0.06 kJ 6-15 kJ 50 ns Lead Target 10k5/gGW1000-1013gTW **x 200**-600 5 GW/g 1 TW/g X 200 ~ 1 eV 10-20 eV

Atomic and Plasma Physics, and Applied Sciences APPA@FAIR

From Basic Science to Applications

Thomas Stöhlker GSI-Darmstadt and Helmholtz Institute Jena

1500 Shots of PHELIX delivered

PHELI

GSI

Total of 25 Experimental Campaigns : Ion stopping @ Z6 GSI, TU Darmstadt, Sarov Proton acceleration TU Darmstadt, GSI, Rutherford, Strathclyde Kα – x-ray production Bordeaux, Moscow, GSI

X-ray lasers

Paris-Sud, GSI, Jena

Relativistic electron transport Strathclyde, Rutherford, GSI, TU Darmstadt

Significant results were obtained in particle acceleration

 Targets developed by TU Darmstadt were shot at PHELIX yielding an increase in proton energy compared to flat foils

EMEINSCHAF1

HELMHOLTZ

651

• GSI has started a program to couple laseraccelerated ions into conventional structures

Plasma Physics @ GSI

FAIR

The Plasma Physics Facilities @ GSI

Unrent Developments EMMI, HIC4FAIR, HI-Jena, Helmholtz

Plasma Physics with Intense Ion Beams

Relevant for astrophysics, planetary science, inertial confinement fusion research, material science under extreme conditions Measurements are required for guidance of theoretical models

Electron Transport in a Solid Target

Code development "PEPC" Scalable to300k cores of IBM Blue Gene/P *A. Karmakar, M. Winkel, L. Arnold, P. Gibbon*

Picosecond resolution copper Ka diagnostic

Role of refluxing electrons in the production of Kalpha radiation

Paul Neumayer et al.

80 μm Ti wire, Resolution: 20 μm (longitudinal ~ 60 μm)

Ion Interaction with Laser Generated Plasma Targets

Code development RALEF-2D (*Radiative Arbitrary Lagrangian-Eulerian Fluid dynamics*) Hydrodynamics from WDM to radiation-dominated plasmas

Ionization of laser heated foils

M. Basko, J. Maruhn, A. Tauschwitz

2ω option for Z6 was implemented in order to reduce target instabilities New results by A. Frank et al. show expected improvement

Theoretical Input From EMMI Decisive For Success !

GSI demonstrated an improved scheme for short-wavelength x-ray laser

• The setup answers the following experimental conditions:

Th. Kühl