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Relativistic laser transparency and propagation in plasma: 
Is it governed by dispersion relation or energy balance?
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Preface

“Open Sesame”, 
“Ali baba and 

the forty thieves”

Who opens the door for 
relativistic intense laser 
pulse propagating into an 
overdense plasma? 

How does it work?
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Classical EM wave propagation



 
Dispersion relation
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Group velocity (or propagation velocity)
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plasma frequency  is the minimum frequency for EM wave propagation in a plasma.
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Critical density



 
Wave Equation
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4Relativistic induced transparency



 
Single particle’s 8-like motion for a ≥
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T. C. Pesch

 
and H. –J. Kull, Phys. Plasmas 14, 083103 (2007).
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

 

Dimensionless laser amplitude a:
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Relativistic induced transparency



 
If |v| ~ c,
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Group velocity (relativistic)
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Relativistic critical density

the Lorentz factor averaged from the single particle‘s 
8-like motion

P. Mulser and D. Bauer, “High Power Laser-Matter Interaction”, Springer, 2010.
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A new diagnostics for determing the critical density
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Laser and plasma parameters


 

Cycle-averaged propagation appears very regular, 
laser is mainly reflected at the relativistic critical surface 
the steady state relativistic wave equation is satisfied well
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Critical density VS laser intensity
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In a normally incident and linearly polarized laser pulse, 
the total field amplitude      at critical surface and the incident 
laser amplitude      approximately satisfy

ta
2 2/ 2 1ta a  a



8Effect of laser polarization

for 10,  0a  



 

For circular polarization, a sharp density peak restricts the 
critical density increase and prevents the laser propagation
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9Effect of laser polarization


 

For normal incident, the relativistic critical density increase 
can be well fitted by

3
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10Effect of plasma density profile



 

For a very steep and relativistically overdense plasma.



 

For normal incident, if density scale length L>λ,
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Response time of critical density increase

From energy balance, response time t

Kinetic energy density,
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Relativistic laser beam propagation (LP)



 

Previous community attributed the inhibition of the propagation 
velocity to the oscillation of the ponderomotive force and hence 
the oscillation of electron density at the laser front.1
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[1] H. Sakagami, K. Mima, Phys. Rev. E 54, 1870 (1996).



13Relativistic laser beam propagation (CP)



 

Inhibition of propagation velocity is not attributed to the 
oscillation of ponderomotive force.
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Ponderomotive force for circular polarized laser

CP pulse propagates even 
more slowly than LP pulse.
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Non-relativistic  Relativistic transparency

dielectric function =1- /
is constant in plasma
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Relativistic propagation velocity

propagation velocity can be well fitted by
exp( / )

for 1,  and =0
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Application (a): Ion acceleration and Fast ignition

L. Yin et al, Laser Part. Beams 24, 291 (2006), Phys. Plasmas 14, 056706 (2007);

J. J. Honrubia et al, Nucl. Fusion 46, L25 (2006), J Phys. Conf. Ser. 244 (2010).



 

The Break Out Afterburner is an ion acceleration technique 
that may achieve the fast ignition
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Application (a): Ion acceleration and Fast ignition



 

The Break Out Afterburner (BOA) is a robust ion acceleration 
mechanism that occurs (> 1020 W/cm2, LP) when a nm-scale target 
turns relativistically transparent 

Initially, heating 
is confined to 
the target front

Target expands
Skin depth widens
Volumetric heating

Target becomes 
relativistically
transparent
BOA begins ne <ncr

relativistic
transparency

ne <nc
classical

transparency

L. Yin et al, Laser Part. Beams 24, 291 (2006), Phys. Plasmas 14, 056706 (2007).
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Application (b): Relativistic plasma shutter



 

A relativistic plasma shutter can remove the pre-pulse 
and produce a clean ultrahigh intensity pulse

S. A. Reed et al., Appl. Phys. Lett. 94, 201117 (2009).

This shutter is 
classically overdense

but 
relativistically underdense.



19Application (c): Shortening of laser pulses


 

A quasi-single-cycle relativistic pulse can be produced 
by ultrahigh laser-foil interaction

L. L. Ji et al., Phys. Rev. Lett. 103, 215005 (2009).

The thin foil initially is relativistically 
overdense.
When it evolves into a thick but rare 
plasma, it becomes relativistically 
transparent.
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Conclusion


 

Relativistic induced transpancy makes the propagation of a 
relativistic laser pulse into an overdense plasma possible


 

We clarify the underlying physics of the relativistic critical density increase, and 
propose a method for determining the relativistic critical surface and the relativistic 
critical density increase.



 

We have shown that the critical density increase strongly depends on the plasma 
density profile and laser polarization, and have discovered and explained a rather 
long response time for the relativistic critical density increase. 



 

Relativistic laser pulse propagation is governed by energy balance


 

The propagation velocity is much less than the group velocity from dispersion relation 
when the total energy density in plasma exceeds the wave energy density in vacuum. 



 

The relativistic induced transparency finds wide applications in 
fast ignition scheme, ion acceleration, relativistic plasma shutter, 
and shortening of laser pulses.

Thanks for your attention!
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