

Relativistic laser transparency and propagation in plasma: Is it governed by dispersion relation or energy balance?

Su-Ming Weng

Theoretical Quantum Electronics (TQE), Physics Department Technical University of Darmstadt, Germany

In collaboration with

Prof. Peter Mulser (TU Darmstadt)
Prof. Hartmut Ruhl (LMU Munich)
Prof. Zheng-Ming Sheng (Shanghai Jiaotong University & IoP, CA\$)
Prof. Jie Zhang (Shanghai Jiaotong University & IoP, CA\$)

2-4. May 2011, GSI, Darmstadt, Germany

4th EMMI workshop on Plasma Physics with Intense Heavy Ion and Laser Beams

Preface

"Open Sesame",

"Ali baba and the forty thieves"

Who opens the door for relativistic intense laser pulse propagating into an overdense plasma?

How does it work?

Outline

Theoretical background

- Classical eletromagnetic (EM) wave propagation
- Relativistic induced transparency

Numerical simulations

- Relativistic critical density increase
- Relativistic laser pulse propagation

Applications

- Ion acceleration and Fast ignition
- Relativistic plasma shutter
- Shortening of laser pulses

Conclusion

Classical EM wave propagation

• Wave Equation

 $\nabla^2 \mathbf{E} + \frac{\omega^2}{c^2} \varepsilon \mathbf{E} = 0$ (in a uniform plasma)

• Dispersion relation

$$\omega^2 = \omega_p^2 + c^2 k^2,$$

plasma frequency ω_p is the minimum frequency for EM wave propagation in a plasma. the electrons will shield the EM field when $\omega < \omega_p = \sqrt{4\pi e^2 n / m_e}$

Critical density

the condition $\omega_p = \omega$ defines the so-called critical density n_c ,

 $n_c = m_e \omega^2 / 4\pi e^2 = 1.1 \times 10^{21} / (\lambda [\mu m])^2 \text{ cm}^{-3}$

Group velocity (or propagation velocity)

$$\frac{v_g}{c} \equiv \frac{1}{c} \frac{\partial \omega}{\partial k} = \sqrt{\varepsilon} = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{1/2} = \left(1 - \frac{n}{n_c}\right)^{1/2}$$

Relativistic induced transparency

• Dimensionless laser amplitude a:

$$I\lambda^{2} = \frac{\pi}{2}cA^{2} = \left[1.37 \times 10^{18} \frac{W}{cm^{2}} \mu m^{2}\right] A^{2}$$

• Single particle's 8-like motion for $a \ge 1$

Relativistic induced transparency

- If $|\mathbf{v}| \sim \mathbf{c}$, $m_e = \gamma m_{e0} = (1 - v^2 / c^2)^{-1/2} m_{e0}$
- Relativistic critical density

$$n_{cr} = m_e \omega^2 / 4\pi e^2 = \langle \gamma \rangle n_c$$

the Lorentz factor averaged from the single particle's 8-like motion

 $\langle \gamma \rangle \approx [1 + a_t^2 / 2]^{1/2}$, a_t the local total field amplitude.

Group velocity (relativistic)

$$\frac{v_g}{c} = \left(1 - \frac{n}{n_{cr}}\right)^{1/2} = \left(1 - \frac{n}{\langle \gamma \rangle n_c}\right)^{1/2}$$

P. Mulser and D. Bauer, "High Power Laser-Matter Interaction", Springer, 2010.

A new diagnostics for determing the critical density

Laser and plasma parameters Cycle-averaged propagation appears very regular, laser is mainly reflected at the relativistic critical surface $x < 5\lambda$

the steady state relativistic wave equation is satisfied well ise;

a = 10, incident angle $\theta = 0$

Incident wave field energy density $E_{in} = (E_y + B_z)^2 / 4 + (E_z - B_y)^2 / 4$ Reflected wave field energy density $E_{re} = (E_v - B_z)^2 / 4 + (E_z + B_v)^2 / 4$

relativistic 1 4 ave 2 equation: x

Critical density VS laser intensity

• In a normally incident and linearly polarized laser pulse, the total field amplitude a_t at critical surface and the incident laser amplitude a approximately satisfy $\Theta = a_t^2 / 2a^2 \approx 1$

$$n_{cr} = [1 + a_t^2 / 2]^{1/2} n_c \approx n_R \equiv [1 + a^2]^{1/2} n_c$$

if density scale length $L \ge \lambda$ n_{cr} almost of no dependence on *L*

Effect of laser polarization

• For circular polarization, a sharp density peak restricts the critical density increase and prevents the laser propagation

for a = 10, $\theta = 0$

- (a) Linear polarization $\gamma_c = 8.96 = [1 + \Theta a^2]^{1/2},$ $\Theta \approx \frac{a_t^2}{2a^2} = 0.793$
- (b) Circular polarization $\gamma_c = 7.29 = [1 + \Theta a^2]^{1/2},$ $\Theta \approx \frac{a_t^2}{2a^2} = 0.521$

Effect of laser polarization

• For normal incident, the relativistic critical density increase can be well fitted by $\gamma_c = [1 + \Theta a^2]^{1/2}$,

with $\Theta \approx \begin{cases} 0.79 + 1.36 \exp(-a^3) & \text{(linear polarization)} \\ 0.48 + 2.15 \exp(-a^{1/2}) & \text{(circular polarization)} \end{cases}$

Effect of plasma density profile

• For normal incident, if density scale length $L > \lambda$,

 $\gamma_{\rm c} = n_{cr}/{\rm n}_c$ is almost independent of density profile

• For a very steep and relativistically overdense plasma. $\gamma_c = n_{cr}/n_c$ is strongly suppressed

Response time of critical density increase

Kinetic energy density,

 $E_{\rm kin} = (\gamma_{\rm c} - 1)n_0 \mathrm{m}_{\rm e} \mathrm{c}^2,$

For relativistic transparency,

 $E_{\rm kin}$ can be larger than $E_{\rm em}$

Skin depth,

 $l_d = \lambda / (n_0 / n_{cr} - 1)^{1/2}$

From energy balance, response time t

$$t / \tau_L = l_{\rm d} E_{\rm kin} / (1 - R) I,$$

for $n_0=10n_c$

 $t \approx 15\tau_L$

Relativistic laser beam propagation (LP)

 Previous community attributed the inhibition of the propagation velocity to the oscillation of the ponderomotive force and hence the oscillation of electron density at the laser front.¹

[1] H. Sakagami, K. Mima, Phys. Rev. E 54, 1870 (1996).

Relativistic laser beam propagation (CP)

• Ponderomotive force for circular polarized laser

Inhibition of propagation velocity is not attributed to the oscillation of ponderomotive force.

Non-relativistic Relativistic transparency $\mathcal{E}=1-n_{e}/n_{cr}$ behide laser front dielectric function $\varepsilon = 1 - n_{e} / n_{c}$ $\varepsilon = 1 - n_{\rho} / n_{c}$ before laser front is constant in plasma response time for $n_c \rightarrow n_{cr}$ R=0 at laser front $R \ge 0$ at laser front $E'_{em} + E'_{kin} = E_{em}, \quad E'_{kin} < E'_{em}$ $E_{kin} = E_{em}, \quad E_{kin} < E_{em} \qquad E_{em} + E_{kin} \ge E_{em}, \quad E_{kin} - E_{em} = E_{em}, \quad E_{em} = E_{em$ 120 From energy balance, propagation velocity E

15

χ/λ

 $V_p = V_g$

Application (a): Ion acceleration and Fast ignition

 The Break Out Afterburner is an ion acceleration technique that may achieve the fast ignition

L. Yin et al, Laser Part. Beams 24, 291 (2006), Phys. Plasmas 14, 056706 (2007);J. J. Honrubia et al, Nucl. Fusion 46, L25 (2006), J Phys. Conf. Ser. 244 (2010).

Application (a): Ion acceleration and Fast ignition

 The Break Out Afterburner (BOA) is a robust ion acceleration mechanism that occurs (> 10²⁰ W/cm², LP) when a nm-scale target turns relativistically transparent

L. Yin et al, Laser Part. Beams 24, 291 (2006), Phys. Plasmas 14, 056706 (2007).

Application (b): Relativistic plasma shutter

• A relativistic plasma shutter can remove the pre-pulse and produce a clean ultrahigh intensity pulse

S. A. Reed et al., Appl. Phys. Lett. 94, 201117 (2009).

Application (c): Shortening of laser pulses

 A quasi-single-cycle relativistic pulse can be produced by ultrahigh laser-foil interaction

L. L. Ji et al., Phys. Rev. Lett. 103, 215005 (2009).

Conclusion

Relativistic induced transpancy makes the propagation of a relativistic laser pulse into an overdense plasma possible

- We clarify the underlying physics of the relativistic critical density increase, and propose a method for determining the relativistic critical surface and the relativistic critical density increase.
- We have shown that the critical density increase strongly depends on the plasma density profile and laser polarization, and have discovered and explained a rather long response time for the relativistic critical density increase.

• Relativistic laser pulse propagation is governed by energy balance

- The propagation velocity is much less than the group velocity from dispersion relation when the total energy density in plasma exceeds the wave energy density in vacuum.
- The relativistic induced transparency finds wide applications in fast ignition scheme, ion acceleration, relativistic plasma shutter, and shortening of laser pulses.

Thanks for your attention!